Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal

Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with wate...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22284
Acceso en línea:
https://doi.org/10.1021/acs.jcim.9b00672
https://repository.urosario.edu.co/handle/10336/22284
Palabra clave:
Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Adaptive immune response
Immune function
Implicit solvent model
Major histocompatibility complex
Relative free energy
Reliable methods
Root mean square errors
Semi-empirical quantum mechanics
Binding energy
Rights
License
Abierto (Texto Completo)
id EDOCUR2_b6b30b1438dc1dba2320158a591f5086
oai_identifier_str oai:repository.urosario.edu.co:10336/22284
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 8f742591-b42c-484a-95af-5e06b51191a7-1716a97c4-e2e1-4d2f-ab5a-d183b95e38e8-1fbbf67da-1c24-466b-a823-fba9e2ba01f9-19fc64f6d-a903-48f1-ac2e-4e55fd2ed9af-176e03223-040d-4e46-864f-3bdecc8d2790-120b87ac9-637e-491a-88a8-542cfcd798d2-12020-05-25T23:55:59Z2020-05-25T23:55:59Z2019Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with water molecules and for calculating the binding energy of receptor + ligand systems, such as HLA-DR1 + HA, HLA-DR1 + CLIP, HLA-DR2 + MBP, and HLA-DR3 + CLIP, as well as a monosubstitution panel. Taking pMHC's structural properties, we assumed that ?H ? -T?S would generate a linear model for estimating relative free energy change, using three semiempirical quantum methods (PM6, PM7, and FMO-SCC-DFTB3) along with the implicit solvent models, and considering proteins in neutral and charged states. Likewise, we confirmed our approach's effectiveness in calculating binding energies having high correlation with experimental data and low root-mean-square error ( less than 2 kcal/mol). All in all, our pipeline differentiates weak from strong peptide binders as a reliable method for studying pMHC interactions. © 2019 American Chemical Society.application/pdfhttps://doi.org/10.1021/acs.jcim.9b006721549960X15499596https://repository.urosario.edu.co/handle/10336/22284engAmerican Chemical Society5160No. 125148Journal of Chemical Information and ModelingVol. 59Journal of Chemical Information and Modeling, ISSN:1549960X, 15499596, Vol.59, No.12 (2019); pp. 5148-5160https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076244262&doi=10.1021%2facs.jcim.9b00672&partnerID=40&md5=cec6d248113953a4e898865e102576f4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBindersFree energyMean square errorMoleculesPeptidesQuantum theoryAdaptive immune responseImmune functionImplicit solvent modelMajor histocompatibility complexRelative free energyReliable methodsRoot mean square errorsSemi-empirical quantum mechanicsBinding energyAssessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based ProposalarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ortiz-Mahecha C.A.Bohórquez H.J.Agudelo W.A.Patarroyo M.A.Patarroyo M.E.Suárez C.F.10336/22284oai:repository.urosario.edu.co:10336/222842022-05-02 07:37:20.319729https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
title Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
spellingShingle Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Adaptive immune response
Immune function
Implicit solvent model
Major histocompatibility complex
Relative free energy
Reliable methods
Root mean square errors
Semi-empirical quantum mechanics
Binding energy
title_short Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
title_full Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
title_fullStr Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
title_full_unstemmed Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
title_sort Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
dc.subject.keyword.spa.fl_str_mv Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Adaptive immune response
Immune function
Implicit solvent model
Major histocompatibility complex
Relative free energy
Reliable methods
Root mean square errors
Semi-empirical quantum mechanics
Binding energy
topic Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Adaptive immune response
Immune function
Implicit solvent model
Major histocompatibility complex
Relative free energy
Reliable methods
Root mean square errors
Semi-empirical quantum mechanics
Binding energy
description Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with water molecules and for calculating the binding energy of receptor + ligand systems, such as HLA-DR1 + HA, HLA-DR1 + CLIP, HLA-DR2 + MBP, and HLA-DR3 + CLIP, as well as a monosubstitution panel. Taking pMHC's structural properties, we assumed that ?H ? -T?S would generate a linear model for estimating relative free energy change, using three semiempirical quantum methods (PM6, PM7, and FMO-SCC-DFTB3) along with the implicit solvent models, and considering proteins in neutral and charged states. Likewise, we confirmed our approach's effectiveness in calculating binding energies having high correlation with experimental data and low root-mean-square error ( less than 2 kcal/mol). All in all, our pipeline differentiates weak from strong peptide binders as a reliable method for studying pMHC interactions. © 2019 American Chemical Society.
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:55:59Z
dc.date.available.none.fl_str_mv 2020-05-25T23:55:59Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1021/acs.jcim.9b00672
dc.identifier.issn.none.fl_str_mv 1549960X
15499596
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22284
url https://doi.org/10.1021/acs.jcim.9b00672
https://repository.urosario.edu.co/handle/10336/22284
identifier_str_mv 1549960X
15499596
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 5160
dc.relation.citationIssue.none.fl_str_mv No. 12
dc.relation.citationStartPage.none.fl_str_mv 5148
dc.relation.citationTitle.none.fl_str_mv Journal of Chemical Information and Modeling
dc.relation.citationVolume.none.fl_str_mv Vol. 59
dc.relation.ispartof.spa.fl_str_mv Journal of Chemical Information and Modeling, ISSN:1549960X, 15499596, Vol.59, No.12 (2019); pp. 5148-5160
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076244262&doi=10.1021%2facs.jcim.9b00672&partnerID=40&md5=cec6d248113953a4e898865e102576f4
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Chemical Society
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167474567905280