Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal
Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with wate...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22284
- Acceso en línea:
- https://doi.org/10.1021/acs.jcim.9b00672
https://repository.urosario.edu.co/handle/10336/22284
- Palabra clave:
- Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Adaptive immune response
Immune function
Implicit solvent model
Major histocompatibility complex
Relative free energy
Reliable methods
Root mean square errors
Semi-empirical quantum mechanics
Binding energy
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_b6b30b1438dc1dba2320158a591f5086 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22284 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
8f742591-b42c-484a-95af-5e06b51191a7-1716a97c4-e2e1-4d2f-ab5a-d183b95e38e8-1fbbf67da-1c24-466b-a823-fba9e2ba01f9-19fc64f6d-a903-48f1-ac2e-4e55fd2ed9af-176e03223-040d-4e46-864f-3bdecc8d2790-120b87ac9-637e-491a-88a8-542cfcd798d2-12020-05-25T23:55:59Z2020-05-25T23:55:59Z2019Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with water molecules and for calculating the binding energy of receptor + ligand systems, such as HLA-DR1 + HA, HLA-DR1 + CLIP, HLA-DR2 + MBP, and HLA-DR3 + CLIP, as well as a monosubstitution panel. Taking pMHC's structural properties, we assumed that ?H ? -T?S would generate a linear model for estimating relative free energy change, using three semiempirical quantum methods (PM6, PM7, and FMO-SCC-DFTB3) along with the implicit solvent models, and considering proteins in neutral and charged states. Likewise, we confirmed our approach's effectiveness in calculating binding energies having high correlation with experimental data and low root-mean-square error ( less than 2 kcal/mol). All in all, our pipeline differentiates weak from strong peptide binders as a reliable method for studying pMHC interactions. © 2019 American Chemical Society.application/pdfhttps://doi.org/10.1021/acs.jcim.9b006721549960X15499596https://repository.urosario.edu.co/handle/10336/22284engAmerican Chemical Society5160No. 125148Journal of Chemical Information and ModelingVol. 59Journal of Chemical Information and Modeling, ISSN:1549960X, 15499596, Vol.59, No.12 (2019); pp. 5148-5160https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076244262&doi=10.1021%2facs.jcim.9b00672&partnerID=40&md5=cec6d248113953a4e898865e102576f4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBindersFree energyMean square errorMoleculesPeptidesQuantum theoryAdaptive immune responseImmune functionImplicit solvent modelMajor histocompatibility complexRelative free energyReliable methodsRoot mean square errorsSemi-empirical quantum mechanicsBinding energyAssessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based ProposalarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ortiz-Mahecha C.A.Bohórquez H.J.Agudelo W.A.Patarroyo M.A.Patarroyo M.E.Suárez C.F.10336/22284oai:repository.urosario.edu.co:10336/222842022-05-02 07:37:20.319729https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
title |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
spellingShingle |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal Binders Free energy Mean square error Molecules Peptides Quantum theory Adaptive immune response Immune function Implicit solvent model Major histocompatibility complex Relative free energy Reliable methods Root mean square errors Semi-empirical quantum mechanics Binding energy |
title_short |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
title_full |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
title_fullStr |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
title_full_unstemmed |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
title_sort |
Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal |
dc.subject.keyword.spa.fl_str_mv |
Binders Free energy Mean square error Molecules Peptides Quantum theory Adaptive immune response Immune function Implicit solvent model Major histocompatibility complex Relative free energy Reliable methods Root mean square errors Semi-empirical quantum mechanics Binding energy |
topic |
Binders Free energy Mean square error Molecules Peptides Quantum theory Adaptive immune response Immune function Implicit solvent model Major histocompatibility complex Relative free energy Reliable methods Root mean square errors Semi-empirical quantum mechanics Binding energy |
description |
Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with water molecules and for calculating the binding energy of receptor + ligand systems, such as HLA-DR1 + HA, HLA-DR1 + CLIP, HLA-DR2 + MBP, and HLA-DR3 + CLIP, as well as a monosubstitution panel. Taking pMHC's structural properties, we assumed that ?H ? -T?S would generate a linear model for estimating relative free energy change, using three semiempirical quantum methods (PM6, PM7, and FMO-SCC-DFTB3) along with the implicit solvent models, and considering proteins in neutral and charged states. Likewise, we confirmed our approach's effectiveness in calculating binding energies having high correlation with experimental data and low root-mean-square error ( less than 2 kcal/mol). All in all, our pipeline differentiates weak from strong peptide binders as a reliable method for studying pMHC interactions. © 2019 American Chemical Society. |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:55:59Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:55:59Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1021/acs.jcim.9b00672 |
dc.identifier.issn.none.fl_str_mv |
1549960X 15499596 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22284 |
url |
https://doi.org/10.1021/acs.jcim.9b00672 https://repository.urosario.edu.co/handle/10336/22284 |
identifier_str_mv |
1549960X 15499596 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
5160 |
dc.relation.citationIssue.none.fl_str_mv |
No. 12 |
dc.relation.citationStartPage.none.fl_str_mv |
5148 |
dc.relation.citationTitle.none.fl_str_mv |
Journal of Chemical Information and Modeling |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 59 |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Chemical Information and Modeling, ISSN:1549960X, 15499596, Vol.59, No.12 (2019); pp. 5148-5160 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076244262&doi=10.1021%2facs.jcim.9b00672&partnerID=40&md5=cec6d248113953a4e898865e102576f4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
American Chemical Society |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167474567905280 |