Cointegration vector estimation by dols for a three-dimensional panel
This paper extends the results of the dynamic ordinary least squares cointegration vector estimator available in the literature to a three-dimensional panel. We use a balanced panel of N and M lengths observed over T periods. The cointegration vector is homogeneous across individuals but we allow fo...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23013
- Acceso en línea:
- https://doi.org/10.15446/rce.v38n1.48801
https://repository.urosario.edu.co/handle/10336/23013
- Palabra clave:
- Cointegration
Multidimensional
Panel data
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_b5254a4459480a1f767bc9670472c147 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23013 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
11d971a0-2012-4ec9-9f71-8f4582723eb7-1cde620fe-799f-4c3e-989f-5db3e6f5aafa-132d47cf1-0240-4168-acc7-872ffed6359d-12020-05-25T23:59:15Z2020-05-25T23:59:15Z2015This paper extends the results of the dynamic ordinary least squares cointegration vector estimator available in the literature to a three-dimensional panel. We use a balanced panel of N and M lengths observed over T periods. The cointegration vector is homogeneous across individuals but we allow for individual heterogeneity using different short-run dynamics, individual-specific fixed effects and individual-specific time trends. We also model cross-sectional dependence using time-specific effects. The estimator has a Gaussian sequential limit distribution that is obtained by first letting T ? ? and then letting N ? ?, M ? ?. The Monte Carlo simulations show evidence that the finite sample properties of the estimator are closely related to the asymptotic ones. © 2015 Revista Colombiana de Estadística All rights received.application/pdfhttps://doi.org/10.15446/rce.v38n1.488011201751https://repository.urosario.edu.co/handle/10336/23013engUniversidad Nacional de Colombia73No. 145Revista Colombiana de EstadisticaVol. 38Revista Colombiana de Estadistica, ISSN:1201751, Vol.38, No.1 (2015); pp. 45-73https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923246414&doi=10.15446%2frce.v38n1.48801&partnerID=40&md5=aaaccbbec989d95e42ccb4af4d6a59a9Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCointegrationMultidimensionalPanel dataCointegration vector estimation by dols for a three-dimensional panelEstimación de un modelo de cointegración utilizando DOLS para un panel de tres dimensionesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Melo-Velandia L.F.León J.J.Saboyá D.ORIGINAL48801-240496-1-PB.pdfapplication/pdf759110https://repository.urosario.edu.co/bitstreams/df81daa5-3329-45d8-b932-11b0a1d55464/download902b716f8b49cfd7669f96faebda004bMD51TEXT48801-240496-1-PB.pdf.txt48801-240496-1-PB.pdf.txtExtracted texttext/plain55658https://repository.urosario.edu.co/bitstreams/e2af81ec-ffab-455d-a8b5-2683aa991efa/downloadee516e00e75b38584ac7af447c6a5faaMD52THUMBNAIL48801-240496-1-PB.pdf.jpg48801-240496-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg2938https://repository.urosario.edu.co/bitstreams/7bf718be-a5c5-4f99-869f-b784d1a89856/download3a43a208e329885774bf7aa1bf9dfcdcMD5310336/23013oai:repository.urosario.edu.co:10336/230132022-05-02 07:37:20.857886https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Cointegration vector estimation by dols for a three-dimensional panel |
dc.title.TranslatedTitle.spa.fl_str_mv |
Estimación de un modelo de cointegración utilizando DOLS para un panel de tres dimensiones |
title |
Cointegration vector estimation by dols for a three-dimensional panel |
spellingShingle |
Cointegration vector estimation by dols for a three-dimensional panel Cointegration Multidimensional Panel data |
title_short |
Cointegration vector estimation by dols for a three-dimensional panel |
title_full |
Cointegration vector estimation by dols for a three-dimensional panel |
title_fullStr |
Cointegration vector estimation by dols for a three-dimensional panel |
title_full_unstemmed |
Cointegration vector estimation by dols for a three-dimensional panel |
title_sort |
Cointegration vector estimation by dols for a three-dimensional panel |
dc.subject.keyword.spa.fl_str_mv |
Cointegration Multidimensional Panel data |
topic |
Cointegration Multidimensional Panel data |
description |
This paper extends the results of the dynamic ordinary least squares cointegration vector estimator available in the literature to a three-dimensional panel. We use a balanced panel of N and M lengths observed over T periods. The cointegration vector is homogeneous across individuals but we allow for individual heterogeneity using different short-run dynamics, individual-specific fixed effects and individual-specific time trends. We also model cross-sectional dependence using time-specific effects. The estimator has a Gaussian sequential limit distribution that is obtained by first letting T ? ? and then letting N ? ?, M ? ?. The Monte Carlo simulations show evidence that the finite sample properties of the estimator are closely related to the asymptotic ones. © 2015 Revista Colombiana de Estadística All rights received. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:59:15Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:59:15Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.15446/rce.v38n1.48801 |
dc.identifier.issn.none.fl_str_mv |
1201751 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23013 |
url |
https://doi.org/10.15446/rce.v38n1.48801 https://repository.urosario.edu.co/handle/10336/23013 |
identifier_str_mv |
1201751 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
73 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
45 |
dc.relation.citationTitle.none.fl_str_mv |
Revista Colombiana de Estadistica |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 38 |
dc.relation.ispartof.spa.fl_str_mv |
Revista Colombiana de Estadistica, ISSN:1201751, Vol.38, No.1 (2015); pp. 45-73 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923246414&doi=10.15446%2frce.v38n1.48801&partnerID=40&md5=aaaccbbec989d95e42ccb4af4d6a59a9 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/df81daa5-3329-45d8-b932-11b0a1d55464/download https://repository.urosario.edu.co/bitstreams/e2af81ec-ffab-455d-a8b5-2683aa991efa/download https://repository.urosario.edu.co/bitstreams/7bf718be-a5c5-4f99-869f-b784d1a89856/download |
bitstream.checksum.fl_str_mv |
902b716f8b49cfd7669f96faebda004b ee516e00e75b38584ac7af447c6a5faa 3a43a208e329885774bf7aa1bf9dfcdc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167624427241472 |