Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk
Objetivo: Evaluar la efectividad de diferentes modelos de aprendizaje automático en la estimación de los gastos farmacéuticos y no farmacéuticos asociados al diagnóstico de Diabetes Mellitus tipo II, a partir del índice de riesgo clínico determinado por el análisis de comorbilidades.
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42938
- Acceso en línea:
- https://doi.org/10.1371/journal.pone.0301860
https://repository.urosario.edu.co/handle/10336/42938
- Palabra clave:
- Modelos de aprendizaje automático
Gastos farmacéuticos
Gatos no farmacéuticos
Diabetes Mellitus tipo II
Riesgo clínico
Machine Learning Models
Pharmaceutical Expenditures
Non-Pharmaceutical Cats
Type II Diabetes Mellitus
Clinical Risk
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_b47034b15e74a97e1c816a9d45df4fb0 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42938 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
f0519175-cc14-4066-aa1b-fb05619bb33338f5d7d9-4077-4c3e-a8c7-20af31c02e6374591435-e25e-4da5-974e-e08f2d87afce32f18921-8412-43dc-8900-ef7f243d38e5357feaf0-64bf-4581-bea9-189c127a0d484301743c-4199-485b-8769-445ac32532442024-07-08T18:49:45Z2024-07-08T18:49:45Z1/06/20241/06/2024Objetivo: Evaluar la efectividad de diferentes modelos de aprendizaje automático en la estimación de los gastos farmacéuticos y no farmacéuticos asociados al diagnóstico de Diabetes Mellitus tipo II, a partir del índice de riesgo clínico determinado por el análisis de comorbilidades.Objective: To assess the effectiveness of different machine learning models in estimating the pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II diagnosis, based on the clinical risk index determined by the analysis of comorbidities.application/pdfhttps://doi.org/10.1371/journal.pone.0301860https://repository.urosario.edu.co/handle/10336/42938engPLOSPLOS ONEAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2PLOS ONEinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURModelos de aprendizaje automáticoGastos farmacéuticosGatos no farmacéuticosDiabetes Mellitus tipo IIRiesgo clínicoMachine Learning ModelsPharmaceutical ExpendituresNon-Pharmaceutical CatsType II Diabetes MellitusClinical RiskPrediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical riskarticleArtículo de Investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Gonzalez-Rodriguez J-L.Franco C.Pinzón-Espitia O.Caballer V.Alfonso-Lizarazo E.Augusto V.ORIGINALPrediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.pdfapplication/pdf624545https://repository.urosario.edu.co/bitstreams/6f22489b-83e3-4400-836c-2b88db53f22c/downloadc8e136f2beb4d2a962f58f5ccad85deaMD51TEXTPrediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.pdf.txtPrediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.pdf.txtExtracted texttext/plain65064https://repository.urosario.edu.co/bitstreams/75675e64-6906-4898-93de-ef5de372edc2/downloadb702af909109b65e0d8ece91d779ee42MD52THUMBNAILPrediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.pdf.jpgPrediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.pdf.jpgGenerated Thumbnailimage/jpeg4286https://repository.urosario.edu.co/bitstreams/05ad0aea-6674-47a3-ac8e-aaedc2d706b0/downloadccf00a5ccc58217e5d751e4b09fb2be2MD5310336/42938oai:repository.urosario.edu.co:10336/429382024-07-09 03:02:03.546http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
title |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
spellingShingle |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk Modelos de aprendizaje automático Gastos farmacéuticos Gatos no farmacéuticos Diabetes Mellitus tipo II Riesgo clínico Machine Learning Models Pharmaceutical Expenditures Non-Pharmaceutical Cats Type II Diabetes Mellitus Clinical Risk |
title_short |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
title_full |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
title_fullStr |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
title_full_unstemmed |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
title_sort |
Prediction of pharmaceutical and nonpharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk |
dc.subject.spa.fl_str_mv |
Modelos de aprendizaje automático Gastos farmacéuticos Gatos no farmacéuticos Diabetes Mellitus tipo II Riesgo clínico |
topic |
Modelos de aprendizaje automático Gastos farmacéuticos Gatos no farmacéuticos Diabetes Mellitus tipo II Riesgo clínico Machine Learning Models Pharmaceutical Expenditures Non-Pharmaceutical Cats Type II Diabetes Mellitus Clinical Risk |
dc.subject.keyword.eng.fl_str_mv |
Machine Learning Models Pharmaceutical Expenditures Non-Pharmaceutical Cats Type II Diabetes Mellitus Clinical Risk |
description |
Objetivo: Evaluar la efectividad de diferentes modelos de aprendizaje automático en la estimación de los gastos farmacéuticos y no farmacéuticos asociados al diagnóstico de Diabetes Mellitus tipo II, a partir del índice de riesgo clínico determinado por el análisis de comorbilidades. |
publishDate |
2024 |
dc.date.created.spa.fl_str_mv |
1/06/2024 |
dc.date.issued.spa.fl_str_mv |
1/06/2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T18:49:45Z |
dc.date.available.none.fl_str_mv |
2024-07-08T18:49:45Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo de Investigación |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1371/journal.pone.0301860 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42938 |
url |
https://doi.org/10.1371/journal.pone.0301860 https://repository.urosario.edu.co/handle/10336/42938 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
PLOS ONE |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
PLOS |
dc.source.spa.fl_str_mv |
PLOS ONE |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/6f22489b-83e3-4400-836c-2b88db53f22c/download https://repository.urosario.edu.co/bitstreams/75675e64-6906-4898-93de-ef5de372edc2/download https://repository.urosario.edu.co/bitstreams/05ad0aea-6674-47a3-ac8e-aaedc2d706b0/download |
bitstream.checksum.fl_str_mv |
c8e136f2beb4d2a962f58f5ccad85dea b702af909109b65e0d8ece91d779ee42 ccf00a5ccc58217e5d751e4b09fb2be2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167522943959040 |