Bayesian characterization of buildings using seismic interferometry on ambient vibrations
Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, again...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27282
- Acceso en línea:
- https://doi.org/10.1016/j.ymssp.2016.08.038
https://repository.urosario.edu.co/handle/10336/27282
- Palabra clave:
- Probabilistic model updating
Bayesian inference
Seismic interferometry
Building impulse response
Ambient vibration
Markov chain Monte Carlo
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_b2ea8783674965f827d13d331e8a6787 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27282 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
4355c158-1b6d-4e8b-9c45-ae63e12f1037-1386a04d4-f236-477d-be15-0b72ff8bf34c-154d3cf55-abf5-4c96-969b-892f39e5c062-116d84ea0-ea08-4f7f-8b08-bb52ac06807a-196ea5b37-cbac-4803-9b9a-ed1362e81c7c-12020-08-19T14:41:36Z2020-08-19T14:41:36Z2017-02-15Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, against the measured data, so that it can best describe the behavior and performance of the structure. In this paper, we present a novel computational strategy for Bayesian probabilistic updating of building models with response functions extracted from ambient noise measurements using seismic interferometry. The intrinsic building impulse response functions (IRFs) can be extracted from ambient excitation by deconvolving the motion recorded at different floors with respect to the measured ambient ground motion. The IRF represents the representative building response to an input delta function at the ground floor. The measurements are firstly divided into multiple windows for deconvolution and the IRFs for each window are then averaged to represent the overall building IRFs. A hierarchical Bayesian framework with Laplace priors is proposed for updating the finite element model. A Markov chain Monte Carlo technique with adaptive random-walk steps is employed to sample the model parameters for uncertainty quantification. An illustrative example is studied to validate the effectiveness of the proposed algorithm for temporal monitoring and probabilistic model updating of buildings. The structure considered in this paper is a 21-storey concrete building instrumented with 36 accelerometers at the MIT campus. The methodology described here allows for continuous temporal health monitoring, robust model updating as well as post-earthquake damage detection of buildings.application/pdfhttps://doi.org/10.1016/j.ymssp.2016.08.038ISSN: 0888-3270EISSN: 1096-1216https://repository.urosario.edu.co/handle/10336/27282engElsevier486468Mechanical Systems and Signal ProcessingVol. 85Mechanical Systems and Signal Processing, ISSN: 0888-3270;EISSN: 1096-1216, Vol.85 (2017); pp. 468-486 https://www.sciencedirect.com/science/article/abs/pii/S0888327016303296Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecMechanical Systems and Signal Processinginstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURProbabilistic model updatingBayesian inferenceSeismic interferometryBuilding impulse responseAmbient vibrationMarkov chain Monte CarloBayesian characterization of buildings using seismic interferometry on ambient vibrationsCaracterización bayesiana de edificios mediante interferometría sísmica sobre vibraciones ambientalesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Sun, HaoMordret, AurélienPrieto, Germán A.Toksöz, M. NafiBüyüköztürk, Oral10336/27282oai:repository.urosario.edu.co:10336/272822021-06-03 00:50:09.164https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
dc.title.TranslatedTitle.spa.fl_str_mv |
Caracterización bayesiana de edificios mediante interferometría sísmica sobre vibraciones ambientales |
title |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
spellingShingle |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations Probabilistic model updating Bayesian inference Seismic interferometry Building impulse response Ambient vibration Markov chain Monte Carlo |
title_short |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
title_full |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
title_fullStr |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
title_full_unstemmed |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
title_sort |
Bayesian characterization of buildings using seismic interferometry on ambient vibrations |
dc.subject.keyword.spa.fl_str_mv |
Probabilistic model updating Bayesian inference Seismic interferometry Building impulse response Ambient vibration Markov chain Monte Carlo |
topic |
Probabilistic model updating Bayesian inference Seismic interferometry Building impulse response Ambient vibration Markov chain Monte Carlo |
description |
Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, against the measured data, so that it can best describe the behavior and performance of the structure. In this paper, we present a novel computational strategy for Bayesian probabilistic updating of building models with response functions extracted from ambient noise measurements using seismic interferometry. The intrinsic building impulse response functions (IRFs) can be extracted from ambient excitation by deconvolving the motion recorded at different floors with respect to the measured ambient ground motion. The IRF represents the representative building response to an input delta function at the ground floor. The measurements are firstly divided into multiple windows for deconvolution and the IRFs for each window are then averaged to represent the overall building IRFs. A hierarchical Bayesian framework with Laplace priors is proposed for updating the finite element model. A Markov chain Monte Carlo technique with adaptive random-walk steps is employed to sample the model parameters for uncertainty quantification. An illustrative example is studied to validate the effectiveness of the proposed algorithm for temporal monitoring and probabilistic model updating of buildings. The structure considered in this paper is a 21-storey concrete building instrumented with 36 accelerometers at the MIT campus. The methodology described here allows for continuous temporal health monitoring, robust model updating as well as post-earthquake damage detection of buildings. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-02-15 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:41:36Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:41:36Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.ymssp.2016.08.038 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0888-3270 EISSN: 1096-1216 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27282 |
url |
https://doi.org/10.1016/j.ymssp.2016.08.038 https://repository.urosario.edu.co/handle/10336/27282 |
identifier_str_mv |
ISSN: 0888-3270 EISSN: 1096-1216 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
486 |
dc.relation.citationStartPage.none.fl_str_mv |
468 |
dc.relation.citationTitle.none.fl_str_mv |
Mechanical Systems and Signal Processing |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 85 |
dc.relation.ispartof.spa.fl_str_mv |
Mechanical Systems and Signal Processing, ISSN: 0888-3270;EISSN: 1096-1216, Vol.85 (2017); pp. 468-486 |
dc.relation.uri.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0888327016303296 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
Mechanical Systems and Signal Processing |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928146220285952 |