Bayesian characterization of buildings using seismic interferometry on ambient vibrations

Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, again...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27282
Acceso en línea:
https://doi.org/10.1016/j.ymssp.2016.08.038
https://repository.urosario.edu.co/handle/10336/27282
Palabra clave:
Probabilistic model updating
Bayesian inference
Seismic interferometry
Building impulse response
Ambient vibration
Markov chain Monte Carlo
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_b2ea8783674965f827d13d331e8a6787
oai_identifier_str oai:repository.urosario.edu.co:10336/27282
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 4355c158-1b6d-4e8b-9c45-ae63e12f1037-1386a04d4-f236-477d-be15-0b72ff8bf34c-154d3cf55-abf5-4c96-969b-892f39e5c062-116d84ea0-ea08-4f7f-8b08-bb52ac06807a-196ea5b37-cbac-4803-9b9a-ed1362e81c7c-12020-08-19T14:41:36Z2020-08-19T14:41:36Z2017-02-15Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, against the measured data, so that it can best describe the behavior and performance of the structure. In this paper, we present a novel computational strategy for Bayesian probabilistic updating of building models with response functions extracted from ambient noise measurements using seismic interferometry. The intrinsic building impulse response functions (IRFs) can be extracted from ambient excitation by deconvolving the motion recorded at different floors with respect to the measured ambient ground motion. The IRF represents the representative building response to an input delta function at the ground floor. The measurements are firstly divided into multiple windows for deconvolution and the IRFs for each window are then averaged to represent the overall building IRFs. A hierarchical Bayesian framework with Laplace priors is proposed for updating the finite element model. A Markov chain Monte Carlo technique with adaptive random-walk steps is employed to sample the model parameters for uncertainty quantification. An illustrative example is studied to validate the effectiveness of the proposed algorithm for temporal monitoring and probabilistic model updating of buildings. The structure considered in this paper is a 21-storey concrete building instrumented with 36 accelerometers at the MIT campus. The methodology described here allows for continuous temporal health monitoring, robust model updating as well as post-earthquake damage detection of buildings.application/pdfhttps://doi.org/10.1016/j.ymssp.2016.08.038ISSN: 0888-3270EISSN: 1096-1216https://repository.urosario.edu.co/handle/10336/27282engElsevier486468Mechanical Systems and Signal ProcessingVol. 85Mechanical Systems and Signal Processing, ISSN: 0888-3270;EISSN: 1096-1216, Vol.85 (2017); pp. 468-486 https://www.sciencedirect.com/science/article/abs/pii/S0888327016303296Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecMechanical Systems and Signal Processinginstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURProbabilistic model updatingBayesian inferenceSeismic interferometryBuilding impulse responseAmbient vibrationMarkov chain Monte CarloBayesian characterization of buildings using seismic interferometry on ambient vibrationsCaracterización bayesiana de edificios mediante interferometría sísmica sobre vibraciones ambientalesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Sun, HaoMordret, AurélienPrieto, Germán A.Toksöz, M. NafiBüyüköztürk, Oral10336/27282oai:repository.urosario.edu.co:10336/272822021-06-03 00:50:09.164https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Bayesian characterization of buildings using seismic interferometry on ambient vibrations
dc.title.TranslatedTitle.spa.fl_str_mv Caracterización bayesiana de edificios mediante interferometría sísmica sobre vibraciones ambientales
title Bayesian characterization of buildings using seismic interferometry on ambient vibrations
spellingShingle Bayesian characterization of buildings using seismic interferometry on ambient vibrations
Probabilistic model updating
Bayesian inference
Seismic interferometry
Building impulse response
Ambient vibration
Markov chain Monte Carlo
title_short Bayesian characterization of buildings using seismic interferometry on ambient vibrations
title_full Bayesian characterization of buildings using seismic interferometry on ambient vibrations
title_fullStr Bayesian characterization of buildings using seismic interferometry on ambient vibrations
title_full_unstemmed Bayesian characterization of buildings using seismic interferometry on ambient vibrations
title_sort Bayesian characterization of buildings using seismic interferometry on ambient vibrations
dc.subject.keyword.spa.fl_str_mv Probabilistic model updating
Bayesian inference
Seismic interferometry
Building impulse response
Ambient vibration
Markov chain Monte Carlo
topic Probabilistic model updating
Bayesian inference
Seismic interferometry
Building impulse response
Ambient vibration
Markov chain Monte Carlo
description Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, against the measured data, so that it can best describe the behavior and performance of the structure. In this paper, we present a novel computational strategy for Bayesian probabilistic updating of building models with response functions extracted from ambient noise measurements using seismic interferometry. The intrinsic building impulse response functions (IRFs) can be extracted from ambient excitation by deconvolving the motion recorded at different floors with respect to the measured ambient ground motion. The IRF represents the representative building response to an input delta function at the ground floor. The measurements are firstly divided into multiple windows for deconvolution and the IRFs for each window are then averaged to represent the overall building IRFs. A hierarchical Bayesian framework with Laplace priors is proposed for updating the finite element model. A Markov chain Monte Carlo technique with adaptive random-walk steps is employed to sample the model parameters for uncertainty quantification. An illustrative example is studied to validate the effectiveness of the proposed algorithm for temporal monitoring and probabilistic model updating of buildings. The structure considered in this paper is a 21-storey concrete building instrumented with 36 accelerometers at the MIT campus. The methodology described here allows for continuous temporal health monitoring, robust model updating as well as post-earthquake damage detection of buildings.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-02-15
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:41:36Z
dc.date.available.none.fl_str_mv 2020-08-19T14:41:36Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ymssp.2016.08.038
dc.identifier.issn.none.fl_str_mv ISSN: 0888-3270
EISSN: 1096-1216
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27282
url https://doi.org/10.1016/j.ymssp.2016.08.038
https://repository.urosario.edu.co/handle/10336/27282
identifier_str_mv ISSN: 0888-3270
EISSN: 1096-1216
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 486
dc.relation.citationStartPage.none.fl_str_mv 468
dc.relation.citationTitle.none.fl_str_mv Mechanical Systems and Signal Processing
dc.relation.citationVolume.none.fl_str_mv Vol. 85
dc.relation.ispartof.spa.fl_str_mv Mechanical Systems and Signal Processing, ISSN: 0888-3270;EISSN: 1096-1216, Vol.85 (2017); pp. 468-486
dc.relation.uri.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0888327016303296
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.spa.fl_str_mv Mechanical Systems and Signal Processing
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1831928146220285952