Stabilization of the statistical solution of the parabolic equation
We study the convergence of the statistical solutions of the parabolic equation. Under some mixing condition (in the sense of Rosenblatt) for initial measure and natural assumptions on the coefficients of the equation we prove weak convergence to the Gaussian distribution. Similar results for the hy...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 1991
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26028
- Acceso en línea:
- https://doi.org/10.1007/BF00047653
https://repository.urosario.edu.co/handle/10336/26028
- Palabra clave:
- Statistical solution
Convergence of probability measures
Central limit theorem
Parabolic equation
- Rights
- License
- Restringido (Acceso a grupos específicos)
Summary: | We study the convergence of the statistical solutions of the parabolic equation. Under some mixing condition (in the sense of Rosenblatt) for initial measure and natural assumptions on the coefficients of the equation we prove weak convergence to the Gaussian distribution. Similar results for the hyperbolic equations were obtained in [1–4]. |
---|