Stabilization of the statistical solution of the parabolic equation

We study the convergence of the statistical solutions of the parabolic equation. Under some mixing condition (in the sense of Rosenblatt) for initial measure and natural assumptions on the coefficients of the equation we prove weak convergence to the Gaussian distribution. Similar results for the hy...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
1991
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26028
Acceso en línea:
https://doi.org/10.1007/BF00047653
https://repository.urosario.edu.co/handle/10336/26028
Palabra clave:
Statistical solution
Convergence of probability measures
Central limit theorem
Parabolic equation
Rights
License
Restringido (Acceso a grupos específicos)
Description
Summary:We study the convergence of the statistical solutions of the parabolic equation. Under some mixing condition (in the sense of Rosenblatt) for initial measure and natural assumptions on the coefficients of the equation we prove weak convergence to the Gaussian distribution. Similar results for the hyperbolic equations were obtained in [1–4].