NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins
Background: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/21891
- Acceso en línea:
- https://doi.org/10.1186/1471-2105-12-21
https://repository.urosario.edu.co/handle/10336/21891
- Palabra clave:
- Enfermedades
Microbiología
Support vector machine
Dipeptide
Matthews correlation coefficient
Gaussian Kernel function
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_b28ea664a282dcd97be58d58a340ad01 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/21891 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
ea367fd3-bbe1-4a83-a43c-43c368b594d26008496bc6d-45bb-4e62-8701-a1e61a44bfe4600e4b0e3ed-4bf0-4ee1-95bd-cda103ca327e600427c155f-77b4-4377-b36e-706c1940b3dc600796530656002020-05-07T13:44:02Z2020-05-07T13:44:02Z20112011Background: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.Results: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.Conclusions: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/. © 2011 Restrepo-Montoya et al; licensee BioMed Central Ltd.application/pdfhttps://doi.org/10.1186/1471-2105-12-211471-2105https://repository.urosario.edu.co/handle/10336/21891engBMC BioinformaticsVol. 12BMC Bioinformatics, ISSN: 1471-2105 Vol. 12, (2011)https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-21Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUREnfermedades616600Microbiología576600Support vector machineDipeptideMatthews correlation coefficientGaussian Kernel functionNClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteinsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Restrepo-Montoya, DanielPino, CamiloNino, Luis FPatarroyo, Manuel-ElkinPatarroyo, Manuel A.Restrepo-Montoya, DanielPino, CamiloNino, Luis FPatarroyo, Manuel EPatarroyo, Manuel AORIGINALA_classifier_for_non-classically.pdfapplication/pdf661953https://repository.urosario.edu.co/bitstreams/ae8edfe3-743a-4bf6-b0ed-631fff895e34/downloada8701723a64f12afb336cfb7a2bd2333MD51TEXTA_classifier_for_non-classically.pdf.txtA_classifier_for_non-classically.pdf.txtExtracted texttext/plain46588https://repository.urosario.edu.co/bitstreams/c6936878-af7e-4edf-b952-b8a52c70bf09/download93d2cdd7bdb85c428a1cfc62ac2b2fe1MD52THUMBNAILA_classifier_for_non-classically.pdf.jpgA_classifier_for_non-classically.pdf.jpgGenerated Thumbnailimage/jpeg4559https://repository.urosario.edu.co/bitstreams/0b814e8a-2a2c-4fb8-8cf7-27994d607c2b/download912b061cb0eb0b4db6c9a8b089b8d37dMD5310336/21891oai:repository.urosario.edu.co:10336/218912020-05-13 14:49:16.89https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
title |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
spellingShingle |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins Enfermedades Microbiología Support vector machine Dipeptide Matthews correlation coefficient Gaussian Kernel function |
title_short |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
title_full |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
title_fullStr |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
title_full_unstemmed |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
title_sort |
NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins |
dc.subject.ddc.spa.fl_str_mv |
Enfermedades Microbiología |
topic |
Enfermedades Microbiología Support vector machine Dipeptide Matthews correlation coefficient Gaussian Kernel function |
dc.subject.keyword.spa.fl_str_mv |
Support vector machine Dipeptide Matthews correlation coefficient Gaussian Kernel function |
description |
Background: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.Results: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.Conclusions: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/. © 2011 Restrepo-Montoya et al; licensee BioMed Central Ltd. |
publishDate |
2011 |
dc.date.created.none.fl_str_mv |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.accessioned.none.fl_str_mv |
2020-05-07T13:44:02Z |
dc.date.available.none.fl_str_mv |
2020-05-07T13:44:02Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1186/1471-2105-12-21 |
dc.identifier.issn.none.fl_str_mv |
1471-2105 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/21891 |
url |
https://doi.org/10.1186/1471-2105-12-21 https://repository.urosario.edu.co/handle/10336/21891 |
identifier_str_mv |
1471-2105 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationTitle.none.fl_str_mv |
BMC Bioinformatics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 12 |
dc.relation.ispartof.spa.fl_str_mv |
BMC Bioinformatics, ISSN: 1471-2105 Vol. 12, (2011) |
dc.relation.uri.spa.fl_str_mv |
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-21 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/ae8edfe3-743a-4bf6-b0ed-631fff895e34/download https://repository.urosario.edu.co/bitstreams/c6936878-af7e-4edf-b952-b8a52c70bf09/download https://repository.urosario.edu.co/bitstreams/0b814e8a-2a2c-4fb8-8cf7-27994d607c2b/download |
bitstream.checksum.fl_str_mv |
a8701723a64f12afb336cfb7a2bd2333 93d2cdd7bdb85c428a1cfc62ac2b2fe1 912b061cb0eb0b4db6c9a8b089b8d37d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106909058662400 |