Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG comp...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27401
- Acceso en línea:
- https://doi.org/10.3390/e19100516
https://repository.urosario.edu.co/handle/10336/27401
- Palabra clave:
- Brain maturation
Complexity
Ultiscale entropy
Neonatal EEG
Sleep stage classification
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_b0c6fbed909830b9e1aaf2d40961f24c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27401 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
141395126000972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-12020-08-19T14:42:03Z2020-08-19T14:42:03Z2017-09-01Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG complexity evolves during electrocortical maturation and whether complexity features can be used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual age (PMA) using a combination of complexity features. Then, these features are used to build a sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from 26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression analysis revealed a significant positive correlation between the EEG complexity and the infant’s age. Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks. The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly useful index for brain maturation quantification and neonatal sleep stage classification.application/pdfhttps://doi.org/10.3390/e19100516ISSN: 1099-4300https://repository.urosario.edu.co/handle/10336/27401engEntropy516No. 1019EntropyVol. 19Entropy, ISSN: 1099-4300, Vol.19, No.10 (2017); pp. 19-516https://www.mdpi.com/1099-4300/19/10/516/htmAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Entropyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBrain maturationComplexityUltiscale entropyNeonatal EEGSleep stage classificationComplexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classificationAnálisis de la complejidad del EEG neonatal mediante entropía multiescala: aplicaciones en la maduración cerebral y la clasificación de las etapas del sueñoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderJansen, KDereymaeker, ANaulaers, GVan Huffel, SLavanga, MDe Wel, OORIGINALentropy-19-00516-v5.pdfapplication/pdf1509952https://repository.urosario.edu.co/bitstreams/49910e3e-2731-4a3d-b453-7c99853df3ff/download821f68d539da002b32d5cb72cd556a54MD51TEXTentropy-19-00516-v5.pdf.txtentropy-19-00516-v5.pdf.txtExtracted texttext/plain44847https://repository.urosario.edu.co/bitstreams/8b885ddb-12ff-49a3-aa15-1e86602375e9/downloadde8205b14358247592c70014a95f7364MD52THUMBNAILentropy-19-00516-v5.pdf.jpgentropy-19-00516-v5.pdf.jpgGenerated Thumbnailimage/jpeg4919https://repository.urosario.edu.co/bitstreams/1c390ad0-d521-4585-be15-a0778a7e3a5b/download5db03fd611d81262919cf10054856a98MD5310336/27401oai:repository.urosario.edu.co:10336/274012021-06-03 00:50:12.21https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
dc.title.TranslatedTitle.spa.fl_str_mv |
Análisis de la complejidad del EEG neonatal mediante entropía multiescala: aplicaciones en la maduración cerebral y la clasificación de las etapas del sueño |
title |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
spellingShingle |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification Brain maturation Complexity Ultiscale entropy Neonatal EEG Sleep stage classification |
title_short |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
title_full |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
title_fullStr |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
title_full_unstemmed |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
title_sort |
Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification |
dc.subject.keyword.spa.fl_str_mv |
Brain maturation Complexity Ultiscale entropy Neonatal EEG Sleep stage classification |
topic |
Brain maturation Complexity Ultiscale entropy Neonatal EEG Sleep stage classification |
description |
Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG complexity evolves during electrocortical maturation and whether complexity features can be used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual age (PMA) using a combination of complexity features. Then, these features are used to build a sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from 26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression analysis revealed a significant positive correlation between the EEG complexity and the infant’s age. Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks. The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly useful index for brain maturation quantification and neonatal sleep stage classification. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-09-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:42:03Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:42:03Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/e19100516 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 1099-4300 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27401 |
url |
https://doi.org/10.3390/e19100516 https://repository.urosario.edu.co/handle/10336/27401 |
identifier_str_mv |
ISSN: 1099-4300 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
516 |
dc.relation.citationIssue.none.fl_str_mv |
No. 10 |
dc.relation.citationStartPage.none.fl_str_mv |
19 |
dc.relation.citationTitle.none.fl_str_mv |
Entropy |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 19 |
dc.relation.ispartof.spa.fl_str_mv |
Entropy, ISSN: 1099-4300, Vol.19, No.10 (2017); pp. 19-516 |
dc.relation.uri.spa.fl_str_mv |
https://www.mdpi.com/1099-4300/19/10/516/htm |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Entropy |
dc.source.spa.fl_str_mv |
Entropy |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/49910e3e-2731-4a3d-b453-7c99853df3ff/download https://repository.urosario.edu.co/bitstreams/8b885ddb-12ff-49a3-aa15-1e86602375e9/download https://repository.urosario.edu.co/bitstreams/1c390ad0-d521-4585-be15-a0778a7e3a5b/download |
bitstream.checksum.fl_str_mv |
821f68d539da002b32d5cb72cd556a54 de8205b14358247592c70014a95f7364 5db03fd611d81262919cf10054856a98 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167459989553152 |