Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification

Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG comp...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27401
Acceso en línea:
https://doi.org/10.3390/e19100516
https://repository.urosario.edu.co/handle/10336/27401
Palabra clave:
Brain maturation
Complexity
Ultiscale entropy
Neonatal EEG
Sleep stage classification
Rights
License
Abierto (Texto Completo)
id EDOCUR2_b0c6fbed909830b9e1aaf2d40961f24c
oai_identifier_str oai:repository.urosario.edu.co:10336/27401
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 141395126000972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-12020-08-19T14:42:03Z2020-08-19T14:42:03Z2017-09-01Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG complexity evolves during electrocortical maturation and whether complexity features can be used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual age (PMA) using a combination of complexity features. Then, these features are used to build a sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from 26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression analysis revealed a significant positive correlation between the EEG complexity and the infant’s age. Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks. The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly useful index for brain maturation quantification and neonatal sleep stage classification.application/pdfhttps://doi.org/10.3390/e19100516ISSN: 1099-4300https://repository.urosario.edu.co/handle/10336/27401engEntropy516No. 1019EntropyVol. 19Entropy, ISSN: 1099-4300, Vol.19, No.10 (2017); pp. 19-516https://www.mdpi.com/1099-4300/19/10/516/htmAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Entropyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBrain maturationComplexityUltiscale entropyNeonatal EEGSleep stage classificationComplexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classificationAnálisis de la complejidad del EEG neonatal mediante entropía multiescala: aplicaciones en la maduración cerebral y la clasificación de las etapas del sueñoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderJansen, KDereymaeker, ANaulaers, GVan Huffel, SLavanga, MDe Wel, OORIGINALentropy-19-00516-v5.pdfapplication/pdf1509952https://repository.urosario.edu.co/bitstreams/49910e3e-2731-4a3d-b453-7c99853df3ff/download821f68d539da002b32d5cb72cd556a54MD51TEXTentropy-19-00516-v5.pdf.txtentropy-19-00516-v5.pdf.txtExtracted texttext/plain44847https://repository.urosario.edu.co/bitstreams/8b885ddb-12ff-49a3-aa15-1e86602375e9/downloadde8205b14358247592c70014a95f7364MD52THUMBNAILentropy-19-00516-v5.pdf.jpgentropy-19-00516-v5.pdf.jpgGenerated Thumbnailimage/jpeg4919https://repository.urosario.edu.co/bitstreams/1c390ad0-d521-4585-be15-a0778a7e3a5b/download5db03fd611d81262919cf10054856a98MD5310336/27401oai:repository.urosario.edu.co:10336/274012021-06-03 00:50:12.21https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
dc.title.TranslatedTitle.spa.fl_str_mv Análisis de la complejidad del EEG neonatal mediante entropía multiescala: aplicaciones en la maduración cerebral y la clasificación de las etapas del sueño
title Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
spellingShingle Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
Brain maturation
Complexity
Ultiscale entropy
Neonatal EEG
Sleep stage classification
title_short Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
title_full Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
title_fullStr Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
title_full_unstemmed Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
title_sort Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classification
dc.subject.keyword.spa.fl_str_mv Brain maturation
Complexity
Ultiscale entropy
Neonatal EEG
Sleep stage classification
topic Brain maturation
Complexity
Ultiscale entropy
Neonatal EEG
Sleep stage classification
description Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG complexity evolves during electrocortical maturation and whether complexity features can be used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual age (PMA) using a combination of complexity features. Then, these features are used to build a sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from 26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression analysis revealed a significant positive correlation between the EEG complexity and the infant’s age. Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks. The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly useful index for brain maturation quantification and neonatal sleep stage classification.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-09-01
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:42:03Z
dc.date.available.none.fl_str_mv 2020-08-19T14:42:03Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/e19100516
dc.identifier.issn.none.fl_str_mv ISSN: 1099-4300
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27401
url https://doi.org/10.3390/e19100516
https://repository.urosario.edu.co/handle/10336/27401
identifier_str_mv ISSN: 1099-4300
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 516
dc.relation.citationIssue.none.fl_str_mv No. 10
dc.relation.citationStartPage.none.fl_str_mv 19
dc.relation.citationTitle.none.fl_str_mv Entropy
dc.relation.citationVolume.none.fl_str_mv Vol. 19
dc.relation.ispartof.spa.fl_str_mv Entropy, ISSN: 1099-4300, Vol.19, No.10 (2017); pp. 19-516
dc.relation.uri.spa.fl_str_mv https://www.mdpi.com/1099-4300/19/10/516/htm
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Entropy
dc.source.spa.fl_str_mv Entropy
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/49910e3e-2731-4a3d-b453-7c99853df3ff/download
https://repository.urosario.edu.co/bitstreams/8b885ddb-12ff-49a3-aa15-1e86602375e9/download
https://repository.urosario.edu.co/bitstreams/1c390ad0-d521-4585-be15-a0778a7e3a5b/download
bitstream.checksum.fl_str_mv 821f68d539da002b32d5cb72cd556a54
de8205b14358247592c70014a95f7364
5db03fd611d81262919cf10054856a98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167459989553152