Quantum chemical analysis of MHC-peptide interactions for vaccine design
The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and thei...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22598
- Acceso en línea:
- https://doi.org/10.2174/138955710791572488
https://repository.urosario.edu.co/handle/10336/22598
- Palabra clave:
- Hla dr beta1 antigen
Hla dr1 antigen
Major histocompatibility antigen class 2
Unclassified drug
Vaccine
Histocompatibility antigen
Hla antigen
Peptide
Protein binding
Vaccine
Ab initio calculation
Allele
Antigen binding
Antigen presentation
Article
Haplotype
Human
In vitro study
Major histocompatibility complex
Protein binding
Protein interaction
Protein modification
Quantum chemistry
Static electricity
Chemistry
Immunology
Quantum theory
Histocompatibility antigens
Hla antigens
Humans
Peptides
Protein binding
Quantum theory
Static electricity
Vaccines
Computational quantum chemistry
Human leukocyte antigens
Major histocompatibility complex
Molecular electrostatic potentials
Vaccines
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_b092ffbe1ddc6b8a8b04989895fd391b |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22598 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
fbbf67da-1c24-466b-a823-fba9e2ba01f9-176e03223-040d-4e46-864f-3bdecc8d2790-12020-05-25T23:57:04Z2020-05-25T23:57:04Z2010The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide's amino acids, carried out with the aim of describing MHC-peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic 'landscape' and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multiantigenic, subunit-based vaccines, through the application of quantum chemistry methods. © 2010 Bentham Science Publishers Ltd.application/pdfhttps://doi.org/10.2174/13895571079157248813895575https://repository.urosario.edu.co/handle/10336/22598engBentham Science Publishers B.V.758No. 8746Mini-Reviews in Medicinal ChemistryVol. 10Mini-Reviews in Medicinal Chemistry, ISSN:13895575, Vol.10, No.8 (2010); pp. 746-758https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954717016&doi=10.2174%2f138955710791572488&partnerID=40&md5=6ac6978b14d5bf0e4423faad5bf02bacAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHla dr beta1 antigenHla dr1 antigenMajor histocompatibility antigen class 2Unclassified drugVaccineHistocompatibility antigenHla antigenPeptideProtein bindingVaccineAb initio calculationAlleleAntigen bindingAntigen presentationArticleHaplotypeHumanIn vitro studyMajor histocompatibility complexProtein bindingProtein interactionProtein modificationQuantum chemistryStatic electricityChemistryImmunologyQuantum theoryHistocompatibility antigensHla antigensHumansPeptidesProtein bindingQuantum theoryStatic electricityVaccinesComputational quantum chemistryHuman leukocyte antigensMajor histocompatibility complexMolecular electrostatic potentialsVaccinesQuantum chemical analysis of MHC-peptide interactions for vaccine designarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Agudelo, W.APatarroyo, M.E10336/22598oai:repository.urosario.edu.co:10336/225982022-05-02 07:37:14.261761https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
title |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
spellingShingle |
Quantum chemical analysis of MHC-peptide interactions for vaccine design Hla dr beta1 antigen Hla dr1 antigen Major histocompatibility antigen class 2 Unclassified drug Vaccine Histocompatibility antigen Hla antigen Peptide Protein binding Vaccine Ab initio calculation Allele Antigen binding Antigen presentation Article Haplotype Human In vitro study Major histocompatibility complex Protein binding Protein interaction Protein modification Quantum chemistry Static electricity Chemistry Immunology Quantum theory Histocompatibility antigens Hla antigens Humans Peptides Protein binding Quantum theory Static electricity Vaccines Computational quantum chemistry Human leukocyte antigens Major histocompatibility complex Molecular electrostatic potentials Vaccines |
title_short |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
title_full |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
title_fullStr |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
title_full_unstemmed |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
title_sort |
Quantum chemical analysis of MHC-peptide interactions for vaccine design |
dc.subject.keyword.spa.fl_str_mv |
Hla dr beta1 antigen Hla dr1 antigen Major histocompatibility antigen class 2 Unclassified drug Vaccine Histocompatibility antigen Hla antigen Peptide Protein binding Vaccine Ab initio calculation Allele Antigen binding Antigen presentation Article Haplotype Human In vitro study Major histocompatibility complex Protein binding Protein interaction Protein modification Quantum chemistry Static electricity Chemistry Immunology Quantum theory Histocompatibility antigens Hla antigens Humans Peptides Protein binding Quantum theory Static electricity Vaccines Computational quantum chemistry Human leukocyte antigens Major histocompatibility complex Molecular electrostatic potentials Vaccines |
topic |
Hla dr beta1 antigen Hla dr1 antigen Major histocompatibility antigen class 2 Unclassified drug Vaccine Histocompatibility antigen Hla antigen Peptide Protein binding Vaccine Ab initio calculation Allele Antigen binding Antigen presentation Article Haplotype Human In vitro study Major histocompatibility complex Protein binding Protein interaction Protein modification Quantum chemistry Static electricity Chemistry Immunology Quantum theory Histocompatibility antigens Hla antigens Humans Peptides Protein binding Quantum theory Static electricity Vaccines Computational quantum chemistry Human leukocyte antigens Major histocompatibility complex Molecular electrostatic potentials Vaccines |
description |
The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide's amino acids, carried out with the aim of describing MHC-peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic 'landscape' and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multiantigenic, subunit-based vaccines, through the application of quantum chemistry methods. © 2010 Bentham Science Publishers Ltd. |
publishDate |
2010 |
dc.date.created.spa.fl_str_mv |
2010 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:57:04Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:57:04Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.2174/138955710791572488 |
dc.identifier.issn.none.fl_str_mv |
13895575 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22598 |
url |
https://doi.org/10.2174/138955710791572488 https://repository.urosario.edu.co/handle/10336/22598 |
identifier_str_mv |
13895575 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
758 |
dc.relation.citationIssue.none.fl_str_mv |
No. 8 |
dc.relation.citationStartPage.none.fl_str_mv |
746 |
dc.relation.citationTitle.none.fl_str_mv |
Mini-Reviews in Medicinal Chemistry |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 10 |
dc.relation.ispartof.spa.fl_str_mv |
Mini-Reviews in Medicinal Chemistry, ISSN:13895575, Vol.10, No.8 (2010); pp. 746-758 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954717016&doi=10.2174%2f138955710791572488&partnerID=40&md5=6ac6978b14d5bf0e4423faad5bf02bac |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bentham Science Publishers B.V. |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167695414788096 |