Quantum chemical analysis of MHC-peptide interactions for vaccine design

The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and thei...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22598
Acceso en línea:
https://doi.org/10.2174/138955710791572488
https://repository.urosario.edu.co/handle/10336/22598
Palabra clave:
Hla dr beta1 antigen
Hla dr1 antigen
Major histocompatibility antigen class 2
Unclassified drug
Vaccine
Histocompatibility antigen
Hla antigen
Peptide
Protein binding
Vaccine
Ab initio calculation
Allele
Antigen binding
Antigen presentation
Article
Haplotype
Human
In vitro study
Major histocompatibility complex
Protein binding
Protein interaction
Protein modification
Quantum chemistry
Static electricity
Chemistry
Immunology
Quantum theory
Histocompatibility antigens
Hla antigens
Humans
Peptides
Protein binding
Quantum theory
Static electricity
Vaccines
Computational quantum chemistry
Human leukocyte antigens
Major histocompatibility complex
Molecular electrostatic potentials
Vaccines
Rights
License
Abierto (Texto Completo)
id EDOCUR2_b092ffbe1ddc6b8a8b04989895fd391b
oai_identifier_str oai:repository.urosario.edu.co:10336/22598
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling fbbf67da-1c24-466b-a823-fba9e2ba01f9-176e03223-040d-4e46-864f-3bdecc8d2790-12020-05-25T23:57:04Z2020-05-25T23:57:04Z2010The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide's amino acids, carried out with the aim of describing MHC-peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic 'landscape' and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multiantigenic, subunit-based vaccines, through the application of quantum chemistry methods. © 2010 Bentham Science Publishers Ltd.application/pdfhttps://doi.org/10.2174/13895571079157248813895575https://repository.urosario.edu.co/handle/10336/22598engBentham Science Publishers B.V.758No. 8746Mini-Reviews in Medicinal ChemistryVol. 10Mini-Reviews in Medicinal Chemistry, ISSN:13895575, Vol.10, No.8 (2010); pp. 746-758https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954717016&doi=10.2174%2f138955710791572488&partnerID=40&md5=6ac6978b14d5bf0e4423faad5bf02bacAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHla dr beta1 antigenHla dr1 antigenMajor histocompatibility antigen class 2Unclassified drugVaccineHistocompatibility antigenHla antigenPeptideProtein bindingVaccineAb initio calculationAlleleAntigen bindingAntigen presentationArticleHaplotypeHumanIn vitro studyMajor histocompatibility complexProtein bindingProtein interactionProtein modificationQuantum chemistryStatic electricityChemistryImmunologyQuantum theoryHistocompatibility antigensHla antigensHumansPeptidesProtein bindingQuantum theoryStatic electricityVaccinesComputational quantum chemistryHuman leukocyte antigensMajor histocompatibility complexMolecular electrostatic potentialsVaccinesQuantum chemical analysis of MHC-peptide interactions for vaccine designarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Agudelo, W.APatarroyo, M.E10336/22598oai:repository.urosario.edu.co:10336/225982022-05-02 07:37:14.261761https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Quantum chemical analysis of MHC-peptide interactions for vaccine design
title Quantum chemical analysis of MHC-peptide interactions for vaccine design
spellingShingle Quantum chemical analysis of MHC-peptide interactions for vaccine design
Hla dr beta1 antigen
Hla dr1 antigen
Major histocompatibility antigen class 2
Unclassified drug
Vaccine
Histocompatibility antigen
Hla antigen
Peptide
Protein binding
Vaccine
Ab initio calculation
Allele
Antigen binding
Antigen presentation
Article
Haplotype
Human
In vitro study
Major histocompatibility complex
Protein binding
Protein interaction
Protein modification
Quantum chemistry
Static electricity
Chemistry
Immunology
Quantum theory
Histocompatibility antigens
Hla antigens
Humans
Peptides
Protein binding
Quantum theory
Static electricity
Vaccines
Computational quantum chemistry
Human leukocyte antigens
Major histocompatibility complex
Molecular electrostatic potentials
Vaccines
title_short Quantum chemical analysis of MHC-peptide interactions for vaccine design
title_full Quantum chemical analysis of MHC-peptide interactions for vaccine design
title_fullStr Quantum chemical analysis of MHC-peptide interactions for vaccine design
title_full_unstemmed Quantum chemical analysis of MHC-peptide interactions for vaccine design
title_sort Quantum chemical analysis of MHC-peptide interactions for vaccine design
dc.subject.keyword.spa.fl_str_mv Hla dr beta1 antigen
Hla dr1 antigen
Major histocompatibility antigen class 2
Unclassified drug
Vaccine
Histocompatibility antigen
Hla antigen
Peptide
Protein binding
Vaccine
Ab initio calculation
Allele
Antigen binding
Antigen presentation
Article
Haplotype
Human
In vitro study
Major histocompatibility complex
Protein binding
Protein interaction
Protein modification
Quantum chemistry
Static electricity
Chemistry
Immunology
Quantum theory
Histocompatibility antigens
Hla antigens
Humans
Peptides
Protein binding
Quantum theory
Static electricity
Vaccines
Computational quantum chemistry
Human leukocyte antigens
Major histocompatibility complex
Molecular electrostatic potentials
Vaccines
topic Hla dr beta1 antigen
Hla dr1 antigen
Major histocompatibility antigen class 2
Unclassified drug
Vaccine
Histocompatibility antigen
Hla antigen
Peptide
Protein binding
Vaccine
Ab initio calculation
Allele
Antigen binding
Antigen presentation
Article
Haplotype
Human
In vitro study
Major histocompatibility complex
Protein binding
Protein interaction
Protein modification
Quantum chemistry
Static electricity
Chemistry
Immunology
Quantum theory
Histocompatibility antigens
Hla antigens
Humans
Peptides
Protein binding
Quantum theory
Static electricity
Vaccines
Computational quantum chemistry
Human leukocyte antigens
Major histocompatibility complex
Molecular electrostatic potentials
Vaccines
description The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide's amino acids, carried out with the aim of describing MHC-peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic 'landscape' and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multiantigenic, subunit-based vaccines, through the application of quantum chemistry methods. © 2010 Bentham Science Publishers Ltd.
publishDate 2010
dc.date.created.spa.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:57:04Z
dc.date.available.none.fl_str_mv 2020-05-25T23:57:04Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.2174/138955710791572488
dc.identifier.issn.none.fl_str_mv 13895575
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22598
url https://doi.org/10.2174/138955710791572488
https://repository.urosario.edu.co/handle/10336/22598
identifier_str_mv 13895575
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 758
dc.relation.citationIssue.none.fl_str_mv No. 8
dc.relation.citationStartPage.none.fl_str_mv 746
dc.relation.citationTitle.none.fl_str_mv Mini-Reviews in Medicinal Chemistry
dc.relation.citationVolume.none.fl_str_mv Vol. 10
dc.relation.ispartof.spa.fl_str_mv Mini-Reviews in Medicinal Chemistry, ISSN:13895575, Vol.10, No.8 (2010); pp. 746-758
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954717016&doi=10.2174%2f138955710791572488&partnerID=40&md5=6ac6978b14d5bf0e4423faad5bf02bac
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bentham Science Publishers B.V.
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1808391066912555008