PCCA: a program for phylogenetic canonical correlation analysis
Summary: PCCA (phylogenetic canonical correlation analysis) is a new program for canonical correlation analysis of multivariate, continuously valued data from biological species. Canonical correlation analysis is a technique in which derived variables are obtained from two sets of original variables...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2008
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26700
- Acceso en línea:
- https://doi.org/10.1093/bioinformatics/btn065
https://repository.urosario.edu.co/handle/10336/26700
- Palabra clave:
- PCCA
Biological species
Canonical correlations
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_af6dd1216e06135ccb04111fc2ba0395 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/26700 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
5fe626cc-9fa8-40ff-a954-105329f7fd2d-14c8a657b-d646-417f-a355-ef1a9e45b87e-12020-08-19T14:40:04Z2020-08-19T14:40:04Z2008-02-21Summary: PCCA (phylogenetic canonical correlation analysis) is a new program for canonical correlation analysis of multivariate, continuously valued data from biological species. Canonical correlation analysis is a technique in which derived variables are obtained from two sets of original variables whereby the correlations between corresponding derived variables are maximized. It is a very useful multivariate statistical method for the calculation and analysis of correlations between character sets. The program controls for species non-independence due to phylogenetic history and computes canonical coefficients, correlations and scores; and conducts hypothesis tests on the canonical correlations. It can also compute a multivariate version of Pagel’s , which can then be used in the phylogenetic transformation.application/pdfhttps://doi.org/10.1093/bioinformatics/btn065ISSN: 1367-4803EISSN: 1460-2059https://repository.urosario.edu.co/handle/10336/26700engOxford University Press1020No. 71018BioinformaticsVol. 24Bioinformatics, ISSN: 1367-4803;EISSN: 1460-2059, Vol.24, No.7 (01 April 2008); pp. 1018–1020https://academic.oup.com/bioinformatics/article/24/7/1018/297547Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Bioinformaticsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPCCABiological speciesCanonical correlationsPCCA: a program for phylogenetic canonical correlation analysisPCCA: a program for phylogenetic canonical correlation analysisarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Revell, Liam J.Harrison, Alexis S.10336/26700oai:repository.urosario.edu.co:10336/267002022-05-02 07:37:21.852265https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
PCCA: a program for phylogenetic canonical correlation analysis |
dc.title.alternative.spa.fl_str_mv |
PCCA: a program for phylogenetic canonical correlation analysis |
title |
PCCA: a program for phylogenetic canonical correlation analysis |
spellingShingle |
PCCA: a program for phylogenetic canonical correlation analysis PCCA Biological species Canonical correlations |
title_short |
PCCA: a program for phylogenetic canonical correlation analysis |
title_full |
PCCA: a program for phylogenetic canonical correlation analysis |
title_fullStr |
PCCA: a program for phylogenetic canonical correlation analysis |
title_full_unstemmed |
PCCA: a program for phylogenetic canonical correlation analysis |
title_sort |
PCCA: a program for phylogenetic canonical correlation analysis |
dc.subject.keyword.spa.fl_str_mv |
PCCA Biological species Canonical correlations |
topic |
PCCA Biological species Canonical correlations |
description |
Summary: PCCA (phylogenetic canonical correlation analysis) is a new program for canonical correlation analysis of multivariate, continuously valued data from biological species. Canonical correlation analysis is a technique in which derived variables are obtained from two sets of original variables whereby the correlations between corresponding derived variables are maximized. It is a very useful multivariate statistical method for the calculation and analysis of correlations between character sets. The program controls for species non-independence due to phylogenetic history and computes canonical coefficients, correlations and scores; and conducts hypothesis tests on the canonical correlations. It can also compute a multivariate version of Pagel’s , which can then be used in the phylogenetic transformation. |
publishDate |
2008 |
dc.date.created.spa.fl_str_mv |
2008-02-21 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:40:04Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:40:04Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1093/bioinformatics/btn065 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 1367-4803 EISSN: 1460-2059 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/26700 |
url |
https://doi.org/10.1093/bioinformatics/btn065 https://repository.urosario.edu.co/handle/10336/26700 |
identifier_str_mv |
ISSN: 1367-4803 EISSN: 1460-2059 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
1020 |
dc.relation.citationIssue.none.fl_str_mv |
No. 7 |
dc.relation.citationStartPage.none.fl_str_mv |
1018 |
dc.relation.citationTitle.none.fl_str_mv |
Bioinformatics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 24 |
dc.relation.ispartof.spa.fl_str_mv |
Bioinformatics, ISSN: 1367-4803;EISSN: 1460-2059, Vol.24, No.7 (01 April 2008); pp. 1018–1020 |
dc.relation.uri.spa.fl_str_mv |
https://academic.oup.com/bioinformatics/article/24/7/1018/297547 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Oxford University Press |
dc.source.spa.fl_str_mv |
Bioinformatics |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167760109830144 |