A strategy for prioritizing electronic medical records using structured analysis and natural language processing
Objetivo: Los registros médicos electrónicos (RME) típicamente contienen atributos estructurados, así como texto narrativo. La utilidad de los RME para investigación y gestión se ve limitada por la dificultad en analizar automáticamente las porciones narrativas. En consecuencia, este artículo propon...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/18866
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/18866
- Palabra clave:
- Medical Computing
Search Engines
Clinical Researchers
Collaborative Searches
Electronic Medical Record
Electronic Medical Records (Emrs)
Hospital Information Systems
Narrative Text
Pulmonary Hypertension
Structured Analysis
Natural Language Processing Systems
Informática médica
Medicina--Procesamiento de datos
Informática de la salud
- Rights
- License
- Abierto (Texto Completo)
Summary: | Objetivo: Los registros médicos electrónicos (RME) típicamente contienen atributos estructurados, así como texto narrativo. La utilidad de los RME para investigación y gestión se ve limitada por la dificultad en analizar automáticamente las porciones narrativas. En consecuencia, este artículo propone una estrategia para priorizar RME (SPIRE), usando procesamiento de lenguaje natural combinado con análisis de datos estructurados, para poder identificar y jerarquizar RME que satisfagan consultas que buscan pacientes con ciertas enfermedades planteadas por investigadores clínicos o gestores hospitalarios. Materiales y Métodos: La herramienta de software resultante fue evaluada técnicamente y validada con tres casos (falla cardiaca, hipertensión pulmonar y diabetes mellitus) comparado contra resultados obtenidos por expertos. Resultados y Discusión: Nuestros resultados preliminares demuestran alta sensibilidad (70%, 82% y 87% respectivamente) y especificidad (85%, 73.7% and 87.5%) en el conjunto de registros resultante. El área bajo la curva fue de entre 0.84 y 0.9. Conclusiones: SPIRE fue implementado exitosamente y usado en el contexto de un sistema de información de un hospital universitario, permitiendo que investigadores clínicos obtuvieran RME priorizados para sus necesidades de información, a partir de plantillas colaborativas de búsqueda, con resultados más rápidos y precisos que otros métodos existentes. |
---|