On the LP formulation in measure spaces of optimal control problems for jump-diffusions
In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions of Ito-Levy type as a LP problem in a measure space, and prove that the optimal value functions of both problems coincide. The main tools are the dual formulation of the LP primal problem, which...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23362
- Acceso en línea:
- https://doi.org/10.1016/j.sysconle.2015.08.008
https://repository.urosario.edu.co/handle/10336/23362
- Palabra clave:
- Differential equations
Diffusion
Integrodifferential equations
Linear programming
Optimal control systems
Stochastic systems
Viscosity
Dual formulations
Jump diffusion
Occupation measure
Stochastic control
Viscosity solutions
Stochastic control systems
Dual formulation
Jump-diffusion
Linear programming
Occupation measure
Stochastic control
Viscosity solution
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_abd24d26d51e28f13fe09185db4f7352 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23362 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
800853686002020-05-26T00:01:24Z2020-05-26T00:01:24Z2015In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions of Ito-Levy type as a LP problem in a measure space, and prove that the optimal value functions of both problems coincide. The main tools are the dual formulation of the LP primal problem, which is strongly connected to the notion of sub-solution of the partial integro-differential equation of Hamilton-Jacobi-Bellman type associated with the optimal control problem, and the Krylov regularization method for viscosity solutions. © 2015 Elsevier B.V. All rights reserved.application/pdfhttps://doi.org/10.1016/j.sysconle.2015.08.0081676911https://repository.urosario.edu.co/handle/10336/23362engElsevier3633Systems and Control LettersVol. 85Systems and Control Letters, ISSN:1676911, Vol.85,(2015); pp. 33-36https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944104848&doi=10.1016%2fj.sysconle.2015.08.008&partnerID=40&md5=0beb1dee293c38b3a194dc19bff1d2f5Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDifferential equationsDiffusionIntegrodifferential equationsLinear programmingOptimal control systemsStochastic systemsViscosityDual formulationsJump diffusionOccupation measureStochastic controlViscosity solutionsStochastic control systemsDual formulationJump-diffusionLinear programmingOccupation measureStochastic controlViscosity solutionOn the LP formulation in measure spaces of optimal control problems for jump-diffusionsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Serrano Perdomo, Rafael AntonioORIGINAL1-s2-0-S0167691115001759-main.pdfapplication/pdf376226https://repository.urosario.edu.co/bitstreams/ebbb0d04-ff00-410b-a8d8-af76258edade/download66bff1dbcae527179afb9520b189f162MD51TEXT1-s2-0-S0167691115001759-main.pdf.txt1-s2-0-S0167691115001759-main.pdf.txtExtracted texttext/plain21185https://repository.urosario.edu.co/bitstreams/52d4f790-5eb7-410e-8ebc-3444d5a90555/download1a7406650c7ce7ad72ee080281b3ef28MD52THUMBNAIL1-s2-0-S0167691115001759-main.pdf.jpg1-s2-0-S0167691115001759-main.pdf.jpgGenerated Thumbnailimage/jpeg4767https://repository.urosario.edu.co/bitstreams/d1137cb7-06b5-4d14-97b1-0a077e20b8fb/download9503945dedf129d0d81731c4f58f2ed4MD5310336/23362oai:repository.urosario.edu.co:10336/233622021-06-10 23:25:33.47https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
title |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
spellingShingle |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions Differential equations Diffusion Integrodifferential equations Linear programming Optimal control systems Stochastic systems Viscosity Dual formulations Jump diffusion Occupation measure Stochastic control Viscosity solutions Stochastic control systems Dual formulation Jump-diffusion Linear programming Occupation measure Stochastic control Viscosity solution |
title_short |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
title_full |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
title_fullStr |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
title_full_unstemmed |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
title_sort |
On the LP formulation in measure spaces of optimal control problems for jump-diffusions |
dc.subject.keyword.spa.fl_str_mv |
Differential equations Diffusion Integrodifferential equations Linear programming Optimal control systems Stochastic systems Viscosity Dual formulations Jump diffusion Occupation measure Stochastic control Viscosity solutions Stochastic control systems Dual formulation Jump-diffusion Linear programming Occupation measure Stochastic control Viscosity solution |
topic |
Differential equations Diffusion Integrodifferential equations Linear programming Optimal control systems Stochastic systems Viscosity Dual formulations Jump diffusion Occupation measure Stochastic control Viscosity solutions Stochastic control systems Dual formulation Jump-diffusion Linear programming Occupation measure Stochastic control Viscosity solution |
description |
In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions of Ito-Levy type as a LP problem in a measure space, and prove that the optimal value functions of both problems coincide. The main tools are the dual formulation of the LP primal problem, which is strongly connected to the notion of sub-solution of the partial integro-differential equation of Hamilton-Jacobi-Bellman type associated with the optimal control problem, and the Krylov regularization method for viscosity solutions. © 2015 Elsevier B.V. All rights reserved. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:01:24Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:01:24Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.sysconle.2015.08.008 |
dc.identifier.issn.none.fl_str_mv |
1676911 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23362 |
url |
https://doi.org/10.1016/j.sysconle.2015.08.008 https://repository.urosario.edu.co/handle/10336/23362 |
identifier_str_mv |
1676911 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
36 |
dc.relation.citationStartPage.none.fl_str_mv |
33 |
dc.relation.citationTitle.none.fl_str_mv |
Systems and Control Letters |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 85 |
dc.relation.ispartof.spa.fl_str_mv |
Systems and Control Letters, ISSN:1676911, Vol.85,(2015); pp. 33-36 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944104848&doi=10.1016%2fj.sysconle.2015.08.008&partnerID=40&md5=0beb1dee293c38b3a194dc19bff1d2f5 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/ebbb0d04-ff00-410b-a8d8-af76258edade/download https://repository.urosario.edu.co/bitstreams/52d4f790-5eb7-410e-8ebc-3444d5a90555/download https://repository.urosario.edu.co/bitstreams/d1137cb7-06b5-4d14-97b1-0a077e20b8fb/download |
bitstream.checksum.fl_str_mv |
66bff1dbcae527179afb9520b189f162 1a7406650c7ce7ad72ee080281b3ef28 9503945dedf129d0d81731c4f58f2ed4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167735146381312 |