On the LP formulation in measure spaces of optimal control problems for jump-diffusions

In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions of Ito-Levy type as a LP problem in a measure space, and prove that the optimal value functions of both problems coincide. The main tools are the dual formulation of the LP primal problem, which...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23362
Acceso en línea:
https://doi.org/10.1016/j.sysconle.2015.08.008
https://repository.urosario.edu.co/handle/10336/23362
Palabra clave:
Differential equations
Diffusion
Integrodifferential equations
Linear programming
Optimal control systems
Stochastic systems
Viscosity
Dual formulations
Jump diffusion
Occupation measure
Stochastic control
Viscosity solutions
Stochastic control systems
Dual formulation
Jump-diffusion
Linear programming
Occupation measure
Stochastic control
Viscosity solution
Rights
License
Abierto (Texto Completo)
Description
Summary:In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions of Ito-Levy type as a LP problem in a measure space, and prove that the optimal value functions of both problems coincide. The main tools are the dual formulation of the LP primal problem, which is strongly connected to the notion of sub-solution of the partial integro-differential equation of Hamilton-Jacobi-Bellman type associated with the optimal control problem, and the Krylov regularization method for viscosity solutions. © 2015 Elsevier B.V. All rights reserved.