Application of kernel principal component analysis for single-lead-ECG-derived respiration
Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA wher...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27226
- Acceso en línea:
- https://doi.org/10.1109/TBME.2012.2186448
https://repository.urosario.edu.co/handle/10336/27226
- Palabra clave:
- Kerne
Principal component analysis
Electrocardiography
Eigenvalues and eigenfunctions
Coherence
Correlation
Entropy
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_ab5a72e40c02f534b615a7b78783656c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27226 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
49de398d-316e-4685-8f2f-7fa75a0a6468-126c827fb-524d-4c98-829a-5c9a9c9c6127-1bd533eea-79e3-42f0-a282-ffb937b03aeb-1a03a974e-aaea-4359-86ad-ead6f862a091-1373c77e3-5093-43fd-831b-0db88cefa50d-12020-08-19T14:41:24Z2020-08-19T14:41:24Z2012-02-03Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both ), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.application/pdfhttps://doi.org/10.1109/TBME.2012.2186448ISSN: 0018-9294EISSN: 1558-2531https://repository.urosario.edu.co/handle/10336/27226engIEEE1176No. 41169IEEE Transactions on Biomedical EngineeringVol. 59IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.59, No.4 (April 2012); pp. 1169-1176https://ieeexplore.ieee.org/document/6144719Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Biomedical Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURKernePrincipal component analysisElectrocardiographyEigenvalues and eigenfunctionsCoherenceCorrelationEntropyApplication of kernel principal component analysis for single-lead-ECG-derived respirationAplicación del análisis de componentes principales del núcleo para la respiración derivada de ECG de derivación únicaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Widjaja, DevyVaron, CarolinaDorado, AlexanderSuykens, Johan A. K.Van Huffel, Sabine10336/27226oai:repository.urosario.edu.co:10336/272262021-06-03 00:50:08.28https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
dc.title.TranslatedTitle.spa.fl_str_mv |
Aplicación del análisis de componentes principales del núcleo para la respiración derivada de ECG de derivación única |
title |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
spellingShingle |
Application of kernel principal component analysis for single-lead-ECG-derived respiration Kerne Principal component analysis Electrocardiography Eigenvalues and eigenfunctions Coherence Correlation Entropy |
title_short |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
title_full |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
title_fullStr |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
title_full_unstemmed |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
title_sort |
Application of kernel principal component analysis for single-lead-ECG-derived respiration |
dc.subject.keyword.spa.fl_str_mv |
Kerne Principal component analysis Electrocardiography Eigenvalues and eigenfunctions Coherence Correlation Entropy |
topic |
Kerne Principal component analysis Electrocardiography Eigenvalues and eigenfunctions Coherence Correlation Entropy |
description |
Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both ), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs. |
publishDate |
2012 |
dc.date.created.spa.fl_str_mv |
2012-02-03 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:41:24Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:41:24Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/TBME.2012.2186448 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0018-9294 EISSN: 1558-2531 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27226 |
url |
https://doi.org/10.1109/TBME.2012.2186448 https://repository.urosario.edu.co/handle/10336/27226 |
identifier_str_mv |
ISSN: 0018-9294 EISSN: 1558-2531 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
1176 |
dc.relation.citationIssue.none.fl_str_mv |
No. 4 |
dc.relation.citationStartPage.none.fl_str_mv |
1169 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Transactions on Biomedical Engineering |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 59 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.59, No.4 (April 2012); pp. 1169-1176 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/6144719 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
IEEE Transactions on Biomedical Engineering |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167524276699136 |