Application of kernel principal component analysis for single-lead-ECG-derived respiration

Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA wher...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27226
Acceso en línea:
https://doi.org/10.1109/TBME.2012.2186448
https://repository.urosario.edu.co/handle/10336/27226
Palabra clave:
Kerne
Principal component analysis
Electrocardiography
Eigenvalues and eigenfunctions
Coherence
Correlation
Entropy
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_ab5a72e40c02f534b615a7b78783656c
oai_identifier_str oai:repository.urosario.edu.co:10336/27226
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 49de398d-316e-4685-8f2f-7fa75a0a6468-126c827fb-524d-4c98-829a-5c9a9c9c6127-1bd533eea-79e3-42f0-a282-ffb937b03aeb-1a03a974e-aaea-4359-86ad-ead6f862a091-1373c77e3-5093-43fd-831b-0db88cefa50d-12020-08-19T14:41:24Z2020-08-19T14:41:24Z2012-02-03Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both ), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.application/pdfhttps://doi.org/10.1109/TBME.2012.2186448ISSN: 0018-9294EISSN: 1558-2531https://repository.urosario.edu.co/handle/10336/27226engIEEE1176No. 41169IEEE Transactions on Biomedical EngineeringVol. 59IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.59, No.4 (April 2012); pp. 1169-1176https://ieeexplore.ieee.org/document/6144719Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Biomedical Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURKernePrincipal component analysisElectrocardiographyEigenvalues and eigenfunctionsCoherenceCorrelationEntropyApplication of kernel principal component analysis for single-lead-ECG-derived respirationAplicación del análisis de componentes principales del núcleo para la respiración derivada de ECG de derivación únicaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Widjaja, DevyVaron, CarolinaDorado, AlexanderSuykens, Johan A. K.Van Huffel, Sabine10336/27226oai:repository.urosario.edu.co:10336/272262021-06-03 00:50:08.28https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Application of kernel principal component analysis for single-lead-ECG-derived respiration
dc.title.TranslatedTitle.spa.fl_str_mv Aplicación del análisis de componentes principales del núcleo para la respiración derivada de ECG de derivación única
title Application of kernel principal component analysis for single-lead-ECG-derived respiration
spellingShingle Application of kernel principal component analysis for single-lead-ECG-derived respiration
Kerne
Principal component analysis
Electrocardiography
Eigenvalues and eigenfunctions
Coherence
Correlation
Entropy
title_short Application of kernel principal component analysis for single-lead-ECG-derived respiration
title_full Application of kernel principal component analysis for single-lead-ECG-derived respiration
title_fullStr Application of kernel principal component analysis for single-lead-ECG-derived respiration
title_full_unstemmed Application of kernel principal component analysis for single-lead-ECG-derived respiration
title_sort Application of kernel principal component analysis for single-lead-ECG-derived respiration
dc.subject.keyword.spa.fl_str_mv Kerne
Principal component analysis
Electrocardiography
Eigenvalues and eigenfunctions
Coherence
Correlation
Entropy
topic Kerne
Principal component analysis
Electrocardiography
Eigenvalues and eigenfunctions
Coherence
Correlation
Entropy
description Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both ), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.
publishDate 2012
dc.date.created.spa.fl_str_mv 2012-02-03
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:41:24Z
dc.date.available.none.fl_str_mv 2020-08-19T14:41:24Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/TBME.2012.2186448
dc.identifier.issn.none.fl_str_mv ISSN: 0018-9294
EISSN: 1558-2531
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27226
url https://doi.org/10.1109/TBME.2012.2186448
https://repository.urosario.edu.co/handle/10336/27226
identifier_str_mv ISSN: 0018-9294
EISSN: 1558-2531
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 1176
dc.relation.citationIssue.none.fl_str_mv No. 4
dc.relation.citationStartPage.none.fl_str_mv 1169
dc.relation.citationTitle.none.fl_str_mv IEEE Transactions on Biomedical Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 59
dc.relation.ispartof.spa.fl_str_mv IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.59, No.4 (April 2012); pp. 1169-1176
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/6144719
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv IEEE Transactions on Biomedical Engineering
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167524276699136