Specific interaction between mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits Mycobacterial entry in vitro

Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been base...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23650
Acceso en línea:
https://doi.org/10.1111/cbdd.12365
https://repository.urosario.edu.co/handle/10336/23650
Palabra clave:
BCG vaccine
Lipoprotein
Mycobacterium tuberculosis lipoprotein Rv1411c
Mycobacterium tuberculosis lipoprotein Rv1911c
Mycobacterium tuberculosis lipoprotein Rv2270
Mycobacterium tuberculosis lipoprotein Rv3763
Unclassified drug
Antibody
Bacterial protein
Lipoprotein
Microsphere
Peptide
Protein binding
A549 cell line
Amino acid sequence
Article
Bacterial membrane
Bacterial virulence
Controlled study
Epithelium cell
Host pathogen interaction
Human
In vitro study
Mycobacterium tuberculosis
Nonhuman
Protein expression
Protein localization
Protein structure
Target cell
U937 cell line
Biology
Chemistry
Host pathogen interaction
Immunology
Metabolism
Molecular genetics
Mycobacterium tuberculosis
Protein secondary structure
Synthesis
Tumor cell line
Mycobacterium tuberculosis
Amino Acid Sequence
Antibodies
Bacterial Proteins
Computational Biology
Host-Pathogen Interactions
Humans
Lipoproteins
Microspheres
Molecular Sequence Data
Mycobacterium tuberculosis
Peptides
Protein Binding
U937 Cells
Antituberculosis vaccine
High activity binding peptide
Multi-epitope vaccine
Mycobacterium tuberculosis
Synthetic peptide
Tumor
Secondary
Cell Line
Protein Structure
Rights
License
Abierto (Texto Completo)
Description
Summary:Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been based on proteins having immunogenic properties for patients suffering TB and having had promising results in mice and non-human primates. Our approach has been based on a functional approach involving the pathogen-host interaction in the search for antigens to be included in designing an efficient, minimal, subunit-based anti-TB vaccine. This means that Mycobacterium tuberculosis has mainly been involved in studies and that lipoproteins represent an important kind of protein on the cell envelope which can also contribute towards this pathogen's virulence. This study has assessed the expression of four lipoproteins from M. tuberculosis H37Rv, that is, Rv1411c (LprG), Rv1911c (LppC), Rv2270 (LppN) and Rv3763 (LpqH), and the possible biological activity of peptides derived from these. Five peptides were found for these proteins which had high specific binding to both alveolar A549 epithelial cells and U937 monocyte-derived macrophages which were able to significantly inhibit mycobacterial entry to these cells in vitro. © 2014 John Wiley and Sons A/S.