Improved neonatal seizure detection using adaptive learning
In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28672
- Acceso en línea:
- https://doi.org/10.1109/EMBC.2017.8037441
https://repository.urosario.edu.co/handle/10336/28672
- Palabra clave:
- Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_aa36382024c5a184c005e73c33c0d1e2 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28672 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
06b5407b-13bc-4091-8510-b24e71589dde-175072eb4-bdfc-4e2a-a312-e7ef31b9133b-121e3cc2b-385f-4821-a9ca-d9d7303f84ce-13183bdf3-ff03-450d-ae46-40944441d817-138de6b05-427b-4843-8821-5161b28c7324-113e85339-b951-4e4f-84a3-92c720dbe6e0-12020-08-28T15:49:32Z2020-08-28T15:49:32Z2017-09-14In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged.application/pdfhttps://doi.org/10.1109/EMBC.2017.8037441ISBN: 978-1-5090-2810-8EISBN: 978-1-5090-2809-2https://repository.urosario.edu.co/handle/10336/28672engIEEE281328102017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813https://ieeexplore.ieee.org/abstract/document/8037441Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPediatricsDetectorsElectroencephalographyFeature extractionMonitoringTrainingSensitivityImproved neonatal seizure detection using adaptive learningDetección mejorada de convulsiones neonatales mediante aprendizaje adaptativobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Ansari, A. H.Cherian, P. J.Caicedo, A.De Vos, M.Naulaers, G.Van Huffel, S.10336/28672oai:repository.urosario.edu.co:10336/286722021-06-03 00:49:53.864https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Improved neonatal seizure detection using adaptive learning |
dc.title.TranslatedTitle.spa.fl_str_mv |
Detección mejorada de convulsiones neonatales mediante aprendizaje adaptativo |
title |
Improved neonatal seizure detection using adaptive learning |
spellingShingle |
Improved neonatal seizure detection using adaptive learning Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity |
title_short |
Improved neonatal seizure detection using adaptive learning |
title_full |
Improved neonatal seizure detection using adaptive learning |
title_fullStr |
Improved neonatal seizure detection using adaptive learning |
title_full_unstemmed |
Improved neonatal seizure detection using adaptive learning |
title_sort |
Improved neonatal seizure detection using adaptive learning |
dc.subject.keyword.spa.fl_str_mv |
Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity |
topic |
Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity |
description |
In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-09-14 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:32Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:32Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EMBC.2017.8037441 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28672 |
url |
https://doi.org/10.1109/EMBC.2017.8037441 https://repository.urosario.edu.co/handle/10336/28672 |
identifier_str_mv |
ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
2813 |
dc.relation.citationStartPage.none.fl_str_mv |
2810 |
dc.relation.citationTitle.none.fl_str_mv |
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
dc.relation.ispartof.spa.fl_str_mv |
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/abstract/document/8037441 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167525627265024 |