Improved neonatal seizure detection using adaptive learning

In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28672
Acceso en línea:
https://doi.org/10.1109/EMBC.2017.8037441
https://repository.urosario.edu.co/handle/10336/28672
Palabra clave:
Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_aa36382024c5a184c005e73c33c0d1e2
oai_identifier_str oai:repository.urosario.edu.co:10336/28672
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 06b5407b-13bc-4091-8510-b24e71589dde-175072eb4-bdfc-4e2a-a312-e7ef31b9133b-121e3cc2b-385f-4821-a9ca-d9d7303f84ce-13183bdf3-ff03-450d-ae46-40944441d817-138de6b05-427b-4843-8821-5161b28c7324-113e85339-b951-4e4f-84a3-92c720dbe6e0-12020-08-28T15:49:32Z2020-08-28T15:49:32Z2017-09-14In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged.application/pdfhttps://doi.org/10.1109/EMBC.2017.8037441ISBN: 978-1-5090-2810-8EISBN: 978-1-5090-2809-2https://repository.urosario.edu.co/handle/10336/28672engIEEE281328102017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813https://ieeexplore.ieee.org/abstract/document/8037441Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPediatricsDetectorsElectroencephalographyFeature extractionMonitoringTrainingSensitivityImproved neonatal seizure detection using adaptive learningDetección mejorada de convulsiones neonatales mediante aprendizaje adaptativobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Ansari, A. H.Cherian, P. J.Caicedo, A.De Vos, M.Naulaers, G.Van Huffel, S.10336/28672oai:repository.urosario.edu.co:10336/286722021-06-03 00:49:53.864https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Improved neonatal seizure detection using adaptive learning
dc.title.TranslatedTitle.spa.fl_str_mv Detección mejorada de convulsiones neonatales mediante aprendizaje adaptativo
title Improved neonatal seizure detection using adaptive learning
spellingShingle Improved neonatal seizure detection using adaptive learning
Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
title_short Improved neonatal seizure detection using adaptive learning
title_full Improved neonatal seizure detection using adaptive learning
title_fullStr Improved neonatal seizure detection using adaptive learning
title_full_unstemmed Improved neonatal seizure detection using adaptive learning
title_sort Improved neonatal seizure detection using adaptive learning
dc.subject.keyword.spa.fl_str_mv Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
topic Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
description In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-09-14
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:49:32Z
dc.date.available.none.fl_str_mv 2020-08-28T15:49:32Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EMBC.2017.8037441
dc.identifier.issn.none.fl_str_mv ISBN: 978-1-5090-2810-8
EISBN: 978-1-5090-2809-2
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28672
url https://doi.org/10.1109/EMBC.2017.8037441
https://repository.urosario.edu.co/handle/10336/28672
identifier_str_mv ISBN: 978-1-5090-2810-8
EISBN: 978-1-5090-2809-2
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 2813
dc.relation.citationStartPage.none.fl_str_mv 2810
dc.relation.citationTitle.none.fl_str_mv 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
dc.relation.ispartof.spa.fl_str_mv 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/abstract/document/8037441
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167525627265024