Improved neonatal seizure detection using adaptive learning
In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28672
- Acceso en línea:
- https://doi.org/10.1109/EMBC.2017.8037441
https://repository.urosario.edu.co/handle/10336/28672
- Palabra clave:
- Pediatrics
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
- Rights
- License
- Restringido (Acceso a grupos específicos)
Summary: | In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged. |
---|