A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23607
- Acceso en línea:
- https://doi.org/10.1214/14-BJPS245
https://repository.urosario.edu.co/handle/10336/23607
- Palabra clave:
- Additive cylindrical noise
Hölder regularity
Lebesgue spaces
Stochastic cauchy problem
Stochastic convolution
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_a95501049adac8595ab0b80b7b404e3c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23607 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
800853686002020-05-26T00:03:34Z2020-05-26T00:03:34Z2015This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do not depend on the Cameron–Martin Hilbert space associated with the driving cylindrical noise. The main tool of this study is a regularity result for stochastic convolutions in M-type 2 Banach spaces by Brze?niak (Stochastics Stochastics Rep. 61 (1997) 245–295). © Brazilian Statistical Association, 2015.application/pdfhttps://doi.org/10.1214/14-BJPS2451030752https://repository.urosario.edu.co/handle/10336/23607engBrazilian Statistical Association777No. 4767Brazilian Journal of Probability and StatisticsVol. 29Brazilian Journal of Probability and Statistics, ISSN:1030752, Vol.29, No.4 (2015); pp. 767-777https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941932359&doi=10.1214%2f14-BJPS245&partnerID=40&md5=1b06469e6e2828ad26f8d9446dd6a23cAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAdditive cylindrical noiseHölder regularityLebesgue spacesStochastic cauchy problemStochastic convolutionA note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Serrano Perdomo, Rafael Antonio10336/23607oai:repository.urosario.edu.co:10336/236072021-06-10 23:23:40.072https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
title |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
spellingShingle |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces Additive cylindrical noise Hölder regularity Lebesgue spaces Stochastic cauchy problem Stochastic convolution |
title_short |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
title_full |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
title_fullStr |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
title_full_unstemmed |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
title_sort |
A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces |
dc.subject.keyword.spa.fl_str_mv |
Additive cylindrical noise Hölder regularity Lebesgue spaces Stochastic cauchy problem Stochastic convolution |
topic |
Additive cylindrical noise Hölder regularity Lebesgue spaces Stochastic cauchy problem Stochastic convolution |
description |
This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do not depend on the Cameron–Martin Hilbert space associated with the driving cylindrical noise. The main tool of this study is a regularity result for stochastic convolutions in M-type 2 Banach spaces by Brze?niak (Stochastics Stochastics Rep. 61 (1997) 245–295). © Brazilian Statistical Association, 2015. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:03:34Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:03:34Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1214/14-BJPS245 |
dc.identifier.issn.none.fl_str_mv |
1030752 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23607 |
url |
https://doi.org/10.1214/14-BJPS245 https://repository.urosario.edu.co/handle/10336/23607 |
identifier_str_mv |
1030752 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
777 |
dc.relation.citationIssue.none.fl_str_mv |
No. 4 |
dc.relation.citationStartPage.none.fl_str_mv |
767 |
dc.relation.citationTitle.none.fl_str_mv |
Brazilian Journal of Probability and Statistics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 29 |
dc.relation.ispartof.spa.fl_str_mv |
Brazilian Journal of Probability and Statistics, ISSN:1030752, Vol.29, No.4 (2015); pp. 767-777 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941932359&doi=10.1214%2f14-BJPS245&partnerID=40&md5=1b06469e6e2828ad26f8d9446dd6a23c |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Brazilian Statistical Association |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167484746432512 |