A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces

This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23607
Acceso en línea:
https://doi.org/10.1214/14-BJPS245
https://repository.urosario.edu.co/handle/10336/23607
Palabra clave:
Additive cylindrical noise
Hölder regularity
Lebesgue spaces
Stochastic cauchy problem
Stochastic convolution
Rights
License
Abierto (Texto Completo)
id EDOCUR2_a95501049adac8595ab0b80b7b404e3c
oai_identifier_str oai:repository.urosario.edu.co:10336/23607
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 800853686002020-05-26T00:03:34Z2020-05-26T00:03:34Z2015This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do not depend on the Cameron–Martin Hilbert space associated with the driving cylindrical noise. The main tool of this study is a regularity result for stochastic convolutions in M-type 2 Banach spaces by Brze?niak (Stochastics Stochastics Rep. 61 (1997) 245–295). © Brazilian Statistical Association, 2015.application/pdfhttps://doi.org/10.1214/14-BJPS2451030752https://repository.urosario.edu.co/handle/10336/23607engBrazilian Statistical Association777No. 4767Brazilian Journal of Probability and StatisticsVol. 29Brazilian Journal of Probability and Statistics, ISSN:1030752, Vol.29, No.4 (2015); pp. 767-777https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941932359&doi=10.1214%2f14-BJPS245&partnerID=40&md5=1b06469e6e2828ad26f8d9446dd6a23cAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAdditive cylindrical noiseHölder regularityLebesgue spacesStochastic cauchy problemStochastic convolutionA note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Serrano Perdomo, Rafael Antonio10336/23607oai:repository.urosario.edu.co:10336/236072021-06-10 23:23:40.072https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
title A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
spellingShingle A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
Additive cylindrical noise
Hölder regularity
Lebesgue spaces
Stochastic cauchy problem
Stochastic convolution
title_short A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
title_full A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
title_fullStr A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
title_full_unstemmed A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
title_sort A note on space–time Hölder regularity of mild solutions to stochastic cauchy problems in Lp-spaces
dc.subject.keyword.spa.fl_str_mv Additive cylindrical noise
Hölder regularity
Lebesgue spaces
Stochastic cauchy problem
Stochastic convolution
topic Additive cylindrical noise
Hölder regularity
Lebesgue spaces
Stochastic cauchy problem
Stochastic convolution
description This paper revisits the Hölder regularity of mild solutions of parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ? 2 and O ? ?d a bounded domain. We find conditions on p,? and ? under which the mild solution has almost surely trajectories in C?([0,T ]; C? (?). These conditions do not depend on the Cameron–Martin Hilbert space associated with the driving cylindrical noise. The main tool of this study is a regularity result for stochastic convolutions in M-type 2 Banach spaces by Brze?niak (Stochastics Stochastics Rep. 61 (1997) 245–295). © Brazilian Statistical Association, 2015.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:03:34Z
dc.date.available.none.fl_str_mv 2020-05-26T00:03:34Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1214/14-BJPS245
dc.identifier.issn.none.fl_str_mv 1030752
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23607
url https://doi.org/10.1214/14-BJPS245
https://repository.urosario.edu.co/handle/10336/23607
identifier_str_mv 1030752
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 777
dc.relation.citationIssue.none.fl_str_mv No. 4
dc.relation.citationStartPage.none.fl_str_mv 767
dc.relation.citationTitle.none.fl_str_mv Brazilian Journal of Probability and Statistics
dc.relation.citationVolume.none.fl_str_mv Vol. 29
dc.relation.ispartof.spa.fl_str_mv Brazilian Journal of Probability and Statistics, ISSN:1030752, Vol.29, No.4 (2015); pp. 767-777
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941932359&doi=10.1214%2f14-BJPS245&partnerID=40&md5=1b06469e6e2828ad26f8d9446dd6a23c
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Brazilian Statistical Association
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167484746432512