Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models
We study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump asset price model with Markov-modulated (regime switching) jump-size distributions. We give sufficient conditions for existence of optimal policies and find closed-form expressio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23338
- Acceso en línea:
- https://doi.org/10.1080/15326349.2014.999286
https://repository.urosario.edu.co/handle/10336/23338
- Palabra clave:
- Calculations
Stochastic systems
Telegraph
Markov-modulated
Martingale method
Optimal investment consumption
Regime switching
Utility maximizations
Markov processes
Jump-telegraph model
Markov-modulated
Martingale method
Optimal investment-consumption
Pure jump model
Regime switching
Utility maximization
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_a834123c2e9d3588cf097903114f9d02 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23338 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
051eab7f-7e2b-4d50-b548-e1a1828900b8-1800853686002020-05-26T00:01:15Z2020-05-26T00:01:15Z2015We study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump asset price model with Markov-modulated (regime switching) jump-size distributions. We give sufficient conditions for existence of optimal policies and find closed-form expressions for the optimal value function for agents with logarithmic and fractional power (CRRA) utility in the case of two-state Markov chains. The main tools are convex duality techniques, stochastic calculus for pure-jump processes, and explicit formulae for the moments of telegraph processes with Markov-modulated random jumps. Copyright © Taylor and Francis Group, LLC.application/pdfhttps://doi.org/10.1080/15326349.2014.9992861532634915324214https://repository.urosario.edu.co/handle/10336/23338engTaylor and Francis Inc.291No. 2261Stochastic ModelsVol. 31Stochastic Models, ISSN:15326349, 15324214, Vol.31, No.2 (2015); pp. 261-291https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929156576&doi=10.1080%2f15326349.2014.999286&partnerID=40&md5=f75afde8555eb1a64aee0ca6e92a52a4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCalculationsStochastic systemsTelegraphMarkov-modulatedMartingale methodOptimal investment consumptionRegime switchingUtility maximizationsMarkov processesJump-telegraph modelMarkov-modulatedMartingale methodOptimal investment-consumptionPure jump modelRegime switchingUtility maximizationMartingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump modelsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501López, OscarSerrano Perdomo, Rafael Antonio10336/23338oai:repository.urosario.edu.co:10336/233382022-05-02 07:37:20.931124https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
title |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
spellingShingle |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models Calculations Stochastic systems Telegraph Markov-modulated Martingale method Optimal investment consumption Regime switching Utility maximizations Markov processes Jump-telegraph model Markov-modulated Martingale method Optimal investment-consumption Pure jump model Regime switching Utility maximization |
title_short |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
title_full |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
title_fullStr |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
title_full_unstemmed |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
title_sort |
Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models |
dc.subject.keyword.spa.fl_str_mv |
Calculations Stochastic systems Telegraph Markov-modulated Martingale method Optimal investment consumption Regime switching Utility maximizations Markov processes Jump-telegraph model Markov-modulated Martingale method Optimal investment-consumption Pure jump model Regime switching Utility maximization |
topic |
Calculations Stochastic systems Telegraph Markov-modulated Martingale method Optimal investment consumption Regime switching Utility maximizations Markov processes Jump-telegraph model Markov-modulated Martingale method Optimal investment-consumption Pure jump model Regime switching Utility maximization |
description |
We study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump asset price model with Markov-modulated (regime switching) jump-size distributions. We give sufficient conditions for existence of optimal policies and find closed-form expressions for the optimal value function for agents with logarithmic and fractional power (CRRA) utility in the case of two-state Markov chains. The main tools are convex duality techniques, stochastic calculus for pure-jump processes, and explicit formulae for the moments of telegraph processes with Markov-modulated random jumps. Copyright © Taylor and Francis Group, LLC. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:01:15Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:01:15Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/15326349.2014.999286 |
dc.identifier.issn.none.fl_str_mv |
15326349 15324214 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23338 |
url |
https://doi.org/10.1080/15326349.2014.999286 https://repository.urosario.edu.co/handle/10336/23338 |
identifier_str_mv |
15326349 15324214 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
291 |
dc.relation.citationIssue.none.fl_str_mv |
No. 2 |
dc.relation.citationStartPage.none.fl_str_mv |
261 |
dc.relation.citationTitle.none.fl_str_mv |
Stochastic Models |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 31 |
dc.relation.ispartof.spa.fl_str_mv |
Stochastic Models, ISSN:15326349, 15324214, Vol.31, No.2 (2015); pp. 261-291 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929156576&doi=10.1080%2f15326349.2014.999286&partnerID=40&md5=f75afde8555eb1a64aee0ca6e92a52a4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Inc. |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167658877157376 |