Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existe...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42468
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42468
- Palabra clave:
- Aprendizaje automático
Aprendizaje profundo
Colposcopía
Displasia cervical
Neoplasia intraepitelial cervical
Transformadores de visión
Colposcopy
Cervical Dysplasia
Cervical Intraepithelial Neoplasia
Machine Learning
Deep Learning
Classification
Vision Transformers
- Rights
- License
- Attribution-ShareAlike 4.0 International
id |
EDOCUR2_a72c3be48ac0beb96543f615e07617c3 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42468 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
dc.title.TranslatedTitle.none.fl_str_mv |
Cervical Intraepithelial Neoplasia identification using machine learning |
title |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
spellingShingle |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina Aprendizaje automático Aprendizaje profundo Colposcopía Displasia cervical Neoplasia intraepitelial cervical Transformadores de visión Colposcopy Cervical Dysplasia Cervical Intraepithelial Neoplasia Machine Learning Deep Learning Classification Vision Transformers |
title_short |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
title_full |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
title_fullStr |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
title_full_unstemmed |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
title_sort |
Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina |
dc.contributor.advisor.none.fl_str_mv |
Perdomo Charry, Oscar Julián Orjuela Cañón, Álvaro David |
dc.subject.none.fl_str_mv |
Aprendizaje automático Aprendizaje profundo Colposcopía Displasia cervical Neoplasia intraepitelial cervical Transformadores de visión |
topic |
Aprendizaje automático Aprendizaje profundo Colposcopía Displasia cervical Neoplasia intraepitelial cervical Transformadores de visión Colposcopy Cervical Dysplasia Cervical Intraepithelial Neoplasia Machine Learning Deep Learning Classification Vision Transformers |
dc.subject.keyword.none.fl_str_mv |
Colposcopy Cervical Dysplasia Cervical Intraepithelial Neoplasia Machine Learning Deep Learning Classification Vision Transformers |
description |
Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existen investigaciones que se enfocan en su prevención teniendo como objetivo el diagnóstico temprano y seguimiento de su lesión predecesora, la Neoplasia Intraepitelial Cervical, también llamada Displasia Cervical. Por tanto, las metodologías basadas en visión computacional y aprendizaje de máquina son vitales, para el desarrollo de herramientas de asistencia diagnóstica temprana para el apoyo de especialistas. El objetivo de esta propuesta de trabajo de grado de maestría es la aplicación de arquitecturas de Aprendizaje Profundo y Transformadores de Visión para clasificar los grados de avance de la Neoplasia Intraepitelial Cervical usando imágenes de colposcopía obtenidas de la base de datos libre generada para el reto Intel & Mobile ODT Cervical Cancer Screening. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-23T13:08:29Z |
dc.date.available.none.fl_str_mv |
2024-04-23T13:08:29Z |
dc.date.created.none.fl_str_mv |
2024-03-20 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42468 |
url |
https://repository.urosario.edu.co/handle/10336/42468 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
45 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ingeniería Biomédica |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Shrestha, Aamod Dhoj; Neupane, Dinesh; Vedsted, Peter; Kallestrup, Per (2018) Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. En: Asian Pacific journal of cancer prevention: APJCP. Vol. 19; No. 2; pp. 319 Arbyn, Marc; Weiderpass, Elisabete; Bruni, Laia; de Sanjosé, Silvia; Saraiya, Mona; Ferlay, Jacques; Bray, Freddie (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. En: The Lancet Global Health. Vol. 8; No. 2; pp. e191 - e203; Cancer, World Health Organization: International Agency for Research on; Global Cancer Observatory. Consultado en: 2023/04/24/. Público, Ministerio de Salud y Protección Social & Ministerio de Hacienda y Crédito; Cuenta de Alto Costo: Día Mundial del cáncer de cérvix 2022. Consultado en: 2023/04/24/. Cancer, International Agency for Research on; Absolute numbers \emphColombia, incidence and mortality, females, age [20-74]. Consultado en: 2022/10/23/. Disponible en: https://gco.iarc.fr/overtime/en/dataviz/trends?populations=17000_21800_48400_18800&sexes=2&types=1&multiple_populations=1&cancers=16&years=2010_2018&age_end=14&age_start=4&group_populations=0&group_cancers=0&multiple_cancers=0. Osorio-Castaño, Jhon H; Pérez-Villa, Marjorie; Montoya-Zapata, Claudia P; Cardona-Restrepo, Fernando A (2020) Características citológicas previas al diagnóstico de cáncer de cérvix en mujeres de Medellín (Colombia). En: Universidad y Salud. Vol. 22; No. 3; pp. 231 - 237; Martinez, Alicia Azuaga; Malinverno, Manuela Undurraga; Manin, Emily; Petignat, Patrick; Abdulcadir, Jasmine (2021) A cross-sectional study on the prevalence of cervical dysplasia among women with female genital mutilation/cutting. En: Journal of Lower Genital Tract Disease. Vol. 25; No. 3; pp. 210 - 215; Ruiz Arias, Jair Andrey; Solano Torres, Daniela María (2023) Análisis de las estrategias de prevención de cáncer de cuello uterino a partir de genotipos de alto riesgo del virus del papiloma humano en mujeres de Colombia. organization, World Health (2014) Cervical Cancer Screening manual. Khieu, Michelle; Butler, Samantha L (2022) High Grade Squamous Intraepithelial Lesion. En: StatPearls [Internet].: StatPearls Publishing; Javanbakht, Zahra; Kamravamanesh, Mastaneh; Rasulehvandi, Roumina; Heidary, Amirhossin; Haydari, Mehdi; Kazeminia, Mohsen (2023) Global Prevalence of Cervical Dysplasia: A Systematic Review and Meta-Analysis. En: Indian Journal of Gynecologic Oncology. Vol. 21; No. 3; pp. 62 Moscicki, Anna-Barbara; Schiffman, Mark; Franceschi, Silva (2020) The natural history of human papillomavirus infection in relation to cervical cancer. En: Human papillomavirus. pp. 149 - 160; Elsevier; Kaggle, MobileODT, Intel (2017) Cervix Types Classification. BenO, Yau Ben-Or, jljones, Kumar H, Meg Risdal, MRao, Vadim Sherman, Vipul, Wendy Kan (2017) Intel & MobileODT Cervical Cancer Screening. : Kaggle; Norenhag, Johanna; Du, Juan; Olovsson, Matts; Verstraelen, Hans; Engstrand, Lars; Brusselaers, Nele (2020) The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. En: BJOG: An International Journal of Obstetrics & Gynaecology. Vol. 127; No. 2; pp. 171 - 180; Cologne, Germany: Institute for Quality; Care (IQWiG), Efficiency in Health (2006) Cervical cancer: Abnormal cells on the cervix (dysplasia). : InformedHealth.org; Zamora-Julca, Roxana Elizabeth; Ybaseta-Medina, Jorge; Palomino-Herencia, Adrián (2019) Relación entre citología, biopsia y colposcopía en cáncer cérvico uterino. En: Rev. méd. panacea. pp. 31 - 45; R, Prendiville W. and Sankaranarayanan (2017) Colposcopy and reatment of cervical precancer. : International Agency for Research on Cancer; Gamboa, Óscar; González, Mauricio; Bonilla, Jairo; Luna, Joaquín; Murillo, Raúl (2019) Visual techniques for cervical cancer screening in Colombia. En: Biomédica. Vol. 39; No. 1; pp. 65 - 74; Mayeaux Jr, Edward J; Novetsky, Akiva P; Chelmow, David; Garcia, Francisco; Choma, Kim; Liu, Angela H; Papasozomenos, Theognosia; Einstein, Mark H; Massad, L Stewart; Wentzensen, Nicolas; others (2017) ASCCP colposcopy standards: colposcopy quality improvement recommendations for the United States. En: Journal of lower genital tract disease. Vol. 21; No. 4; pp. 242 Hamet, Pavel; Tremblay, Johanne (2017) Artificial intelligence in medicine. En: Metabolism. Vol. 69; pp. S36 - S40; Española, Real Academia; Inteligencia. Simmons, Asa B; Chappell, Steven G (1988) Artificial intelligence-definition and practice. En: IEEE journal of oceanic engineering. Vol. 13; No. 2; pp. 14 - 42; Raschka, Sebastian; Mirjalili, Vahid (2019) Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. : Packt Publishing Ltd; Helm, J Matthew; Swiergosz, Andrew M; Haeberle, Heather S; Karnuta, Jaret M; Schaffer, Jonathan L; Krebs, Viktor E; Spitzer, Andrew I; Ramkumar, Prem N (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. En: Current reviews in musculoskeletal medicine. Vol. 13; pp. 69 - 76; Ramyachitra, D; Manikandan, Parasuraman (2014) Imbalanced dataset classification and solutions: a review. En: International Journal of Computing and Business Research (IJCBR). Vol. 5; No. 4; pp. 1 - 29; Koch, Korbinian; Soll, Marcus (2023) No matter how you slice it: Machine unlearning with SISA comes at the expense of minority classes. pp. 622 - 637; IEEE; Bourtoule, Lucas; Chandrasekaran, Varun; Choquette-Choo, Christopher A; Jia, Hengrui; Travers, Adelin; Zhang, Baiwu; Lie, David; Papernot, Nicolas (2021) Machine unlearning. pp. 141 - 159; IEEE; Kaul, Vivek; Enslin, Sarah; Gross, Seth A (2020) History of artificial intelligence in medicine. En: Gastrointestinal endoscopy. Vol. 92; No. 4; pp. 807 - 812; Secinaro, Silvana; Calandra, Davide; Secinaro, Aurelio; Muthurangu, Vivek; Biancone, Paolo (2021) The role of artificial intelligence in healthcare: a structured literature review. En: BMC medical informatics and decision making. Vol. 21; pp. 1 - 23; Hamid, Sobia (2016) The opportunities and risks of artificial intelligence in medicine and healthcare. Zhang, Yudong; Wang, Jiaji; Gorriz, Juan Manuel; Wang, Shuihua (2023) Deep learning and vision transformer for medical image analysis. : MDPI; Park, Jinhee; Yang, Hyunmo; Roh, Hyun-Jin; Jung, Woonggyu; Jang, Gil-Jin (2022) Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images. En: Cancers. Vol. 14; No. 14; pp. 3400 Yu, Yao; Ma, Jie; Zhao, Weidong; Li, Zhenmin; Ding, Shuai (2021) MSCI: A multistate dataset for colposcopy image classification of cervical cancer screening. En: International Journal of Medical Informatics. Vol. 146; pp. 104352 Payette, Jack; Rachleff, Jake; de Graaf, C (2017) Intel and mobileodt cervical cancer screening kaggle competition: cervix type classification using deep learning and image classification. En: Stanford University. Alejandro, Bravo-Ort\íz Mario; Brayan, Arteaga-Arteaga Harold; Reinel, Tabares-Soto Kl; Iv\án, Padilla-Buritic\á Jorge; Simón, Orozco-Arias (2021) Clasificación de cáncer cervical usando redes neuronales convolucionales, transferencia de aprendizaje y aumento de datos. En: Revista EIA. Vol. 18; No. 35; pp. 100 - 111; Saini, Sumindar Kaur; Bansal, Vasudha; Kaur, Ravinder; Juneja, Mamta (2020) ColpoNet for automated cervical cancer screening using colposcopy images. En: Machine Vision and Applications. Vol. 31; pp. 1 - 15; Darwish, Manal; Altabel, Mohamad Ziad; Abiyev, Rahib H (2023) Enhancing Cervical Pre-Cancerous Classification Using Advanced Vision Transformer. En: Diagnostics. Vol. 13; No. 18; pp. 2884 Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Keras (2023) Keras Applications. Szegedy, Christian; Ioffe, Sergey; Vanhoucke, Vincent; Alemi, Alexander (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Vol. 31; Shi, Jian-Feng; Ulrich, Steve; Ruel, Stéphane (2018) Cubesat simulation and detection using monocular camera images and convolutional neural networks. pp. 1604 Howard, Andrew G; Zhu, Menglong; Chen, Bo; Kalenichenko, Dmitry; Wang, Weijun; Weyand, Tobias; Andreetto, Marco; Adam, Hartwig (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. En: arXiv preprint arXiv:1704.04861. Kadam, Kalyani Dhananjay; Ahirrao, Swati; Kotecha, Ketan; others (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask R-CNN with MobileNet V1. En: Computational Intelligence and Neuroscience. Vol. 2022; Chollet, Francois (2021) Deep learning with Python. : Simon and Schuster; Tensorflow (2022) Transfer Learning and fine-tuning. Gerón, Aurélien (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. : O'Reilly; Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017) Attention is all you need. En: Advances in neural information processing systems. Vol. 30; Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; others (2020) An image is worth 16x16 words: Transformers for image recognition at scale. En: arXiv preprint arXiv:2010.11929. Lee, Seung Hoon; Lee, Seunghyun; Song, Byung Cheol (2021) Vision transformer for small-size datasets. En: arXiv preprint arXiv:2112.13492. Fang, Yuxin; Yang, Shusheng; Wang, Shijie; Ge, Yixiao; Shan, Ying; Wang, Xinggang (2023) Unleashing vanilla vision transformer with masked image modeling for object detection. pp. 6244 - 6253; S, Narkhede (2018) Understanding Confusion Matrix. C, Zelada (2017) Evaluación de modelos de clasificación. McHugh, Mary L (2012) Interrater reliability: the kappa statistic. En: Biochemia medica. Vol. 22; No. 3; pp. 276 - 282; Alberg, Anthony J; Park, Ji Wan; Hager, Brant W; Brock, Malcolm V; Diener-West, Marie (2004) The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests. En: Journal of general internal medicine. Vol. 19; No. 5p1; pp. 460 - 465; Godbole, Shantanu; Sarawagi, Sunita (2004) Discriminative methods for multi-labeled classification. pp. 22 - 30; Springer; Society, The American Cancer (2021) The American Cancer Society Guidelines for the Prevention and Early Detection of Cervical Cancer. Fontham, Elizabeth TH; Wolf, Andrew MD; Church, Timothy R; Etzioni, Ruth; Flowers, Christopher R; Herzig, Abbe; Guerra, Carmen E; Oeffinger, Kevin C; Shih, Ya-Chen Tina; Walter, Louise C; others (2020) Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. En: CA: a cancer journal for clinicians. Vol. 70; No. 5; pp. 321 - 346; Staats, Paul N; Davey, Diane Davis; Witt, Benjamin L; Ghofrani, Mohiedean; Zhao, Chengquan; Dodd, Leslie G; Goodrich, Kelly; Husain, Mujtaba; Kurtycz, Daniel FI; Russell, Donna K; others (2022) Performance of specific morphologic features in distinguishing low-grade squamous intraepithelial lesions from high-grade squamous intraepithelial lesions in borderline cases: a College of American Pathologists Cytopathology Committee multiobserver study. En: Journal of the American Society of Cytopathology. Vol. 11; No. 2; pp. 102 - 113; Sellors, John W; Sankaranarayanan, R (2003) La colposcopia y el tratamiento de la neoplasia intraepitelial cervical: Manual para principiantes. En: Lyon, Francia: International Agency for Research on Cancer (IARC). Vol. 140; Cáncer, Ministerio de Salud: Observatorio Nacional del (2024) Ruta Integral de Atención en Salud, cáncer de cuello uterino. Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun (2017) Artificial intelligence in healthcare: past, present and future. En: Stroke and vascular neurology. Vol. 2; No. 4; Prendiville, W; Sankaranarayanan, R (2017) Colposcopy and Treatment of Cervical Precancer. En: IARC Technical Report. Vol. 45; Lyon (FR): International Agency for Research on Cancer; |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/22910ee1-6e7f-40e9-a76b-ed6f72234daf/download https://repository.urosario.edu.co/bitstreams/dc55ef69-02f8-4c3d-9fa2-488d9897bf0b/download https://repository.urosario.edu.co/bitstreams/cebafcc8-8e9b-4ab7-984d-f6a917e2de05/download https://repository.urosario.edu.co/bitstreams/65286eb1-f070-409a-9196-923bbdcd041f/download https://repository.urosario.edu.co/bitstreams/af4b9a46-1065-443d-a3e4-672672445493/download https://repository.urosario.edu.co/bitstreams/96321f2e-a0e6-4c1f-8b42-2c7df0d2f31e/download |
bitstream.checksum.fl_str_mv |
74da90719e7edc8d6325df51b78fbdca 5ed0a499ffb1c7c335b4154bc627dde7 b2825df9f458e9d5d96ee8b7cd74fde6 adb7af3ef071a784ffe1b544b9a344ab bb71c6f488e2ff8728af471bf270ffe1 032b0642f7baa766b48a0f7c5c6e09d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167640493522944 |
spelling |
Perdomo Charry, Oscar Juliánd6ae6b29-7412-48ab-a525-d554ba2044fe-1Orjuela Cañón, Álvaro David01e734ed-bd0a-4a02-beb2-863079eef653-1Tenjo Castaño, Camilo AntonioMagíster en Ingeniería BiomédicaMagíster en Ingeniería BiomédicaMaestríaFull time1516b1cf-f2b7-419e-be00-b3b769eeabad-12024-04-23T13:08:29Z2024-04-23T13:08:29Z2024-03-20Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existen investigaciones que se enfocan en su prevención teniendo como objetivo el diagnóstico temprano y seguimiento de su lesión predecesora, la Neoplasia Intraepitelial Cervical, también llamada Displasia Cervical. Por tanto, las metodologías basadas en visión computacional y aprendizaje de máquina son vitales, para el desarrollo de herramientas de asistencia diagnóstica temprana para el apoyo de especialistas. El objetivo de esta propuesta de trabajo de grado de maestría es la aplicación de arquitecturas de Aprendizaje Profundo y Transformadores de Visión para clasificar los grados de avance de la Neoplasia Intraepitelial Cervical usando imágenes de colposcopía obtenidas de la base de datos libre generada para el reto Intel & Mobile ODT Cervical Cancer Screening.Misdiagnosis of Cervical Intraepithelial Neoplasia (CIN) has a direct impact on the increase in cervical cancer mortality rates. Specifically, Latin America has been among the regions with the highest incidence and mortality rates in recent years. Currently there is research that focuses on its prevention aiming at early diagnosis and follow-up of its predecessor lesion, Cervical Intraepithelial Neoplasia, also called Cervical Dysplasia. Therefore, methodologies based on computer vision and machine learning are vital for the development of early diagnostic assistance tools for the support of specialists. The objective of this master's degree work proposal is the application of Deep Learning architectures and Vision Transformers to classify Cervical Intraepithelial Neoplasia progression grades using colposcopy images obtained from the free database generated for the Intel & Mobile ODT Cervical Cancer Screening challenge.45 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/42468spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludMaestría en Ingeniería BiomédicaAttribution-ShareAlike 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-sa/4.0/http://purl.org/coar/access_right/c_abf2Shrestha, Aamod Dhoj; Neupane, Dinesh; Vedsted, Peter; Kallestrup, Per (2018) Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. En: Asian Pacific journal of cancer prevention: APJCP. Vol. 19; No. 2; pp. 319 Arbyn, Marc; Weiderpass, Elisabete; Bruni, Laia; de Sanjosé, Silvia; Saraiya, Mona; Ferlay, Jacques; Bray, Freddie (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. En: The Lancet Global Health. Vol. 8; No. 2; pp. e191 - e203;Cancer, World Health Organization: International Agency for Research on; Global Cancer Observatory. Consultado en: 2023/04/24/.Público, Ministerio de Salud y Protección Social & Ministerio de Hacienda y Crédito; Cuenta de Alto Costo: Día Mundial del cáncer de cérvix 2022. Consultado en: 2023/04/24/.Cancer, International Agency for Research on; Absolute numbers \emphColombia, incidence and mortality, females, age [20-74]. Consultado en: 2022/10/23/. Disponible en: https://gco.iarc.fr/overtime/en/dataviz/trends?populations=17000_21800_48400_18800&sexes=2&types=1&multiple_populations=1&cancers=16&years=2010_2018&age_end=14&age_start=4&group_populations=0&group_cancers=0&multiple_cancers=0.Osorio-Castaño, Jhon H; Pérez-Villa, Marjorie; Montoya-Zapata, Claudia P; Cardona-Restrepo, Fernando A (2020) Características citológicas previas al diagnóstico de cáncer de cérvix en mujeres de Medellín (Colombia). En: Universidad y Salud. Vol. 22; No. 3; pp. 231 - 237;Martinez, Alicia Azuaga; Malinverno, Manuela Undurraga; Manin, Emily; Petignat, Patrick; Abdulcadir, Jasmine (2021) A cross-sectional study on the prevalence of cervical dysplasia among women with female genital mutilation/cutting. En: Journal of Lower Genital Tract Disease. Vol. 25; No. 3; pp. 210 - 215;Ruiz Arias, Jair Andrey; Solano Torres, Daniela María (2023) Análisis de las estrategias de prevención de cáncer de cuello uterino a partir de genotipos de alto riesgo del virus del papiloma humano en mujeres de Colombia. organization, World Health (2014) Cervical Cancer Screening manual. Khieu, Michelle; Butler, Samantha L (2022) High Grade Squamous Intraepithelial Lesion. En: StatPearls [Internet].: StatPearls Publishing;Javanbakht, Zahra; Kamravamanesh, Mastaneh; Rasulehvandi, Roumina; Heidary, Amirhossin; Haydari, Mehdi; Kazeminia, Mohsen (2023) Global Prevalence of Cervical Dysplasia: A Systematic Review and Meta-Analysis. En: Indian Journal of Gynecologic Oncology. Vol. 21; No. 3; pp. 62 Moscicki, Anna-Barbara; Schiffman, Mark; Franceschi, Silva (2020) The natural history of human papillomavirus infection in relation to cervical cancer. En: Human papillomavirus. pp. 149 - 160; Elsevier;Kaggle, MobileODT, Intel (2017) Cervix Types Classification. BenO, Yau Ben-Or, jljones, Kumar H, Meg Risdal, MRao, Vadim Sherman, Vipul, Wendy Kan (2017) Intel & MobileODT Cervical Cancer Screening. : Kaggle;Norenhag, Johanna; Du, Juan; Olovsson, Matts; Verstraelen, Hans; Engstrand, Lars; Brusselaers, Nele (2020) The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. En: BJOG: An International Journal of Obstetrics & Gynaecology. Vol. 127; No. 2; pp. 171 - 180;Cologne, Germany: Institute for Quality; Care (IQWiG), Efficiency in Health (2006) Cervical cancer: Abnormal cells on the cervix (dysplasia). : InformedHealth.org;Zamora-Julca, Roxana Elizabeth; Ybaseta-Medina, Jorge; Palomino-Herencia, Adrián (2019) Relación entre citología, biopsia y colposcopía en cáncer cérvico uterino. En: Rev. méd. panacea. pp. 31 - 45;R, Prendiville W. and Sankaranarayanan (2017) Colposcopy and reatment of cervical precancer. : International Agency for Research on Cancer;Gamboa, Óscar; González, Mauricio; Bonilla, Jairo; Luna, Joaquín; Murillo, Raúl (2019) Visual techniques for cervical cancer screening in Colombia. En: Biomédica. Vol. 39; No. 1; pp. 65 - 74;Mayeaux Jr, Edward J; Novetsky, Akiva P; Chelmow, David; Garcia, Francisco; Choma, Kim; Liu, Angela H; Papasozomenos, Theognosia; Einstein, Mark H; Massad, L Stewart; Wentzensen, Nicolas; others (2017) ASCCP colposcopy standards: colposcopy quality improvement recommendations for the United States. En: Journal of lower genital tract disease. Vol. 21; No. 4; pp. 242 Hamet, Pavel; Tremblay, Johanne (2017) Artificial intelligence in medicine. En: Metabolism. Vol. 69; pp. S36 - S40;Española, Real Academia; Inteligencia. Simmons, Asa B; Chappell, Steven G (1988) Artificial intelligence-definition and practice. En: IEEE journal of oceanic engineering. Vol. 13; No. 2; pp. 14 - 42;Raschka, Sebastian; Mirjalili, Vahid (2019) Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. : Packt Publishing Ltd;Helm, J Matthew; Swiergosz, Andrew M; Haeberle, Heather S; Karnuta, Jaret M; Schaffer, Jonathan L; Krebs, Viktor E; Spitzer, Andrew I; Ramkumar, Prem N (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. En: Current reviews in musculoskeletal medicine. Vol. 13; pp. 69 - 76;Ramyachitra, D; Manikandan, Parasuraman (2014) Imbalanced dataset classification and solutions: a review. En: International Journal of Computing and Business Research (IJCBR). Vol. 5; No. 4; pp. 1 - 29;Koch, Korbinian; Soll, Marcus (2023) No matter how you slice it: Machine unlearning with SISA comes at the expense of minority classes. pp. 622 - 637; IEEE;Bourtoule, Lucas; Chandrasekaran, Varun; Choquette-Choo, Christopher A; Jia, Hengrui; Travers, Adelin; Zhang, Baiwu; Lie, David; Papernot, Nicolas (2021) Machine unlearning. pp. 141 - 159; IEEE;Kaul, Vivek; Enslin, Sarah; Gross, Seth A (2020) History of artificial intelligence in medicine. En: Gastrointestinal endoscopy. Vol. 92; No. 4; pp. 807 - 812;Secinaro, Silvana; Calandra, Davide; Secinaro, Aurelio; Muthurangu, Vivek; Biancone, Paolo (2021) The role of artificial intelligence in healthcare: a structured literature review. En: BMC medical informatics and decision making. Vol. 21; pp. 1 - 23;Hamid, Sobia (2016) The opportunities and risks of artificial intelligence in medicine and healthcare. Zhang, Yudong; Wang, Jiaji; Gorriz, Juan Manuel; Wang, Shuihua (2023) Deep learning and vision transformer for medical image analysis. : MDPI;Park, Jinhee; Yang, Hyunmo; Roh, Hyun-Jin; Jung, Woonggyu; Jang, Gil-Jin (2022) Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images. En: Cancers. Vol. 14; No. 14; pp. 3400 Yu, Yao; Ma, Jie; Zhao, Weidong; Li, Zhenmin; Ding, Shuai (2021) MSCI: A multistate dataset for colposcopy image classification of cervical cancer screening. En: International Journal of Medical Informatics. Vol. 146; pp. 104352 Payette, Jack; Rachleff, Jake; de Graaf, C (2017) Intel and mobileodt cervical cancer screening kaggle competition: cervix type classification using deep learning and image classification. En: Stanford University.Alejandro, Bravo-Ort\íz Mario; Brayan, Arteaga-Arteaga Harold; Reinel, Tabares-Soto Kl; Iv\án, Padilla-Buritic\á Jorge; Simón, Orozco-Arias (2021) Clasificación de cáncer cervical usando redes neuronales convolucionales, transferencia de aprendizaje y aumento de datos. En: Revista EIA. Vol. 18; No. 35; pp. 100 - 111;Saini, Sumindar Kaur; Bansal, Vasudha; Kaur, Ravinder; Juneja, Mamta (2020) ColpoNet for automated cervical cancer screening using colposcopy images. En: Machine Vision and Applications. Vol. 31; pp. 1 - 15;Darwish, Manal; Altabel, Mohamad Ziad; Abiyev, Rahib H (2023) Enhancing Cervical Pre-Cancerous Classification Using Advanced Vision Transformer. En: Diagnostics. Vol. 13; No. 18; pp. 2884 Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Keras (2023) Keras Applications. Szegedy, Christian; Ioffe, Sergey; Vanhoucke, Vincent; Alemi, Alexander (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Vol. 31;Shi, Jian-Feng; Ulrich, Steve; Ruel, Stéphane (2018) Cubesat simulation and detection using monocular camera images and convolutional neural networks. pp. 1604 Howard, Andrew G; Zhu, Menglong; Chen, Bo; Kalenichenko, Dmitry; Wang, Weijun; Weyand, Tobias; Andreetto, Marco; Adam, Hartwig (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. En: arXiv preprint arXiv:1704.04861.Kadam, Kalyani Dhananjay; Ahirrao, Swati; Kotecha, Ketan; others (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask R-CNN with MobileNet V1. En: Computational Intelligence and Neuroscience. Vol. 2022;Chollet, Francois (2021) Deep learning with Python. : Simon and Schuster;Tensorflow (2022) Transfer Learning and fine-tuning. Gerón, Aurélien (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. : O'Reilly;Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017) Attention is all you need. En: Advances in neural information processing systems. Vol. 30;Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; others (2020) An image is worth 16x16 words: Transformers for image recognition at scale. En: arXiv preprint arXiv:2010.11929.Lee, Seung Hoon; Lee, Seunghyun; Song, Byung Cheol (2021) Vision transformer for small-size datasets. En: arXiv preprint arXiv:2112.13492.Fang, Yuxin; Yang, Shusheng; Wang, Shijie; Ge, Yixiao; Shan, Ying; Wang, Xinggang (2023) Unleashing vanilla vision transformer with masked image modeling for object detection. pp. 6244 - 6253;S, Narkhede (2018) Understanding Confusion Matrix. C, Zelada (2017) Evaluación de modelos de clasificación. McHugh, Mary L (2012) Interrater reliability: the kappa statistic. En: Biochemia medica. Vol. 22; No. 3; pp. 276 - 282;Alberg, Anthony J; Park, Ji Wan; Hager, Brant W; Brock, Malcolm V; Diener-West, Marie (2004) The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests. En: Journal of general internal medicine. Vol. 19; No. 5p1; pp. 460 - 465;Godbole, Shantanu; Sarawagi, Sunita (2004) Discriminative methods for multi-labeled classification. pp. 22 - 30; Springer;Society, The American Cancer (2021) The American Cancer Society Guidelines for the Prevention and Early Detection of Cervical Cancer. Fontham, Elizabeth TH; Wolf, Andrew MD; Church, Timothy R; Etzioni, Ruth; Flowers, Christopher R; Herzig, Abbe; Guerra, Carmen E; Oeffinger, Kevin C; Shih, Ya-Chen Tina; Walter, Louise C; others (2020) Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. En: CA: a cancer journal for clinicians. Vol. 70; No. 5; pp. 321 - 346;Staats, Paul N; Davey, Diane Davis; Witt, Benjamin L; Ghofrani, Mohiedean; Zhao, Chengquan; Dodd, Leslie G; Goodrich, Kelly; Husain, Mujtaba; Kurtycz, Daniel FI; Russell, Donna K; others (2022) Performance of specific morphologic features in distinguishing low-grade squamous intraepithelial lesions from high-grade squamous intraepithelial lesions in borderline cases: a College of American Pathologists Cytopathology Committee multiobserver study. En: Journal of the American Society of Cytopathology. Vol. 11; No. 2; pp. 102 - 113;Sellors, John W; Sankaranarayanan, R (2003) La colposcopia y el tratamiento de la neoplasia intraepitelial cervical: Manual para principiantes. En: Lyon, Francia: International Agency for Research on Cancer (IARC). Vol. 140;Cáncer, Ministerio de Salud: Observatorio Nacional del (2024) Ruta Integral de Atención en Salud, cáncer de cuello uterino. Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun (2017) Artificial intelligence in healthcare: past, present and future. En: Stroke and vascular neurology. Vol. 2; No. 4;Prendiville, W; Sankaranarayanan, R (2017) Colposcopy and Treatment of Cervical Precancer. En: IARC Technical Report. Vol. 45; Lyon (FR): International Agency for Research on Cancer;instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAprendizaje automáticoAprendizaje profundoColposcopíaDisplasia cervicalNeoplasia intraepitelial cervicalTransformadores de visiónColposcopyCervical DysplasiaCervical Intraepithelial NeoplasiaMachine LearningDeep LearningClassificationVision TransformersIdentificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquinaCervical Intraepithelial Neoplasia identification using machine learningbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludORIGINALIdentificacion_de_neoplasia_intraepitelial_cervical.pdfIdentificacion_de_neoplasia_intraepitelial_cervical.pdfapplication/pdf1601328https://repository.urosario.edu.co/bitstreams/22910ee1-6e7f-40e9-a76b-ed6f72234daf/download74da90719e7edc8d6325df51b78fbdcaMD51Bibliografia_Identificacion_de_neoplasia_intraepitelial.risBibliografia_Identificacion_de_neoplasia_intraepitelial.risapplication/x-research-info-systems18931https://repository.urosario.edu.co/bitstreams/dc55ef69-02f8-4c3d-9fa2-488d9897bf0b/download5ed0a499ffb1c7c335b4154bc627dde7MD55LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/cebafcc8-8e9b-4ab7-984d-f6a917e2de05/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81154https://repository.urosario.edu.co/bitstreams/65286eb1-f070-409a-9196-923bbdcd041f/downloadadb7af3ef071a784ffe1b544b9a344abMD54TEXTIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.txtIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.txtExtracted texttext/plain69344https://repository.urosario.edu.co/bitstreams/af4b9a46-1065-443d-a3e4-672672445493/downloadbb71c6f488e2ff8728af471bf270ffe1MD56THUMBNAILIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.jpgIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.jpgGenerated Thumbnailimage/jpeg3073https://repository.urosario.edu.co/bitstreams/96321f2e-a0e6-4c1f-8b42-2c7df0d2f31e/download032b0642f7baa766b48a0f7c5c6e09d7MD5710336/42468oai:repository.urosario.edu.co:10336/424682024-04-24 03:03:08.208http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |