Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina

Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existe...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/42468
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42468
Palabra clave:
Aprendizaje automático
Aprendizaje profundo
Colposcopía
Displasia cervical
Neoplasia intraepitelial cervical
Transformadores de visión
Colposcopy
Cervical Dysplasia
Cervical Intraepithelial Neoplasia
Machine Learning
Deep Learning
Classification
Vision Transformers
Rights
License
Attribution-ShareAlike 4.0 International
id EDOCUR2_a72c3be48ac0beb96543f615e07617c3
oai_identifier_str oai:repository.urosario.edu.co:10336/42468
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
dc.title.TranslatedTitle.none.fl_str_mv Cervical Intraepithelial Neoplasia identification using machine learning
title Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
spellingShingle Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
Aprendizaje automático
Aprendizaje profundo
Colposcopía
Displasia cervical
Neoplasia intraepitelial cervical
Transformadores de visión
Colposcopy
Cervical Dysplasia
Cervical Intraepithelial Neoplasia
Machine Learning
Deep Learning
Classification
Vision Transformers
title_short Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
title_full Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
title_fullStr Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
title_full_unstemmed Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
title_sort Identificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquina
dc.contributor.advisor.none.fl_str_mv Perdomo Charry, Oscar Julián
Orjuela Cañón, Álvaro David
dc.subject.none.fl_str_mv Aprendizaje automático
Aprendizaje profundo
Colposcopía
Displasia cervical
Neoplasia intraepitelial cervical
Transformadores de visión
topic Aprendizaje automático
Aprendizaje profundo
Colposcopía
Displasia cervical
Neoplasia intraepitelial cervical
Transformadores de visión
Colposcopy
Cervical Dysplasia
Cervical Intraepithelial Neoplasia
Machine Learning
Deep Learning
Classification
Vision Transformers
dc.subject.keyword.none.fl_str_mv Colposcopy
Cervical Dysplasia
Cervical Intraepithelial Neoplasia
Machine Learning
Deep Learning
Classification
Vision Transformers
description Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existen investigaciones que se enfocan en su prevención teniendo como objetivo el diagnóstico temprano y seguimiento de su lesión predecesora, la Neoplasia Intraepitelial Cervical, también llamada Displasia Cervical. Por tanto, las metodologías basadas en visión computacional y aprendizaje de máquina son vitales, para el desarrollo de herramientas de asistencia diagnóstica temprana para el apoyo de especialistas. El objetivo de esta propuesta de trabajo de grado de maestría es la aplicación de arquitecturas de Aprendizaje Profundo y Transformadores de Visión para clasificar los grados de avance de la Neoplasia Intraepitelial Cervical usando imágenes de colposcopía obtenidas de la base de datos libre generada para el reto Intel & Mobile ODT Cervical Cancer Screening.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-23T13:08:29Z
dc.date.available.none.fl_str_mv 2024-04-23T13:08:29Z
dc.date.created.none.fl_str_mv 2024-03-20
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.none.fl_str_mv Trabajo de grado
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/42468
url https://repository.urosario.edu.co/handle/10336/42468
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
rights_invalid_str_mv Attribution-ShareAlike 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 45 pp
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Maestría en Ingeniería Biomédica
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Shrestha, Aamod Dhoj; Neupane, Dinesh; Vedsted, Peter; Kallestrup, Per (2018) Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. En: Asian Pacific journal of cancer prevention: APJCP. Vol. 19; No. 2; pp. 319
Arbyn, Marc; Weiderpass, Elisabete; Bruni, Laia; de Sanjosé, Silvia; Saraiya, Mona; Ferlay, Jacques; Bray, Freddie (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. En: The Lancet Global Health. Vol. 8; No. 2; pp. e191 - e203;
Cancer, World Health Organization: International Agency for Research on; Global Cancer Observatory. Consultado en: 2023/04/24/.
Público, Ministerio de Salud y Protección Social & Ministerio de Hacienda y Crédito; Cuenta de Alto Costo: Día Mundial del cáncer de cérvix 2022. Consultado en: 2023/04/24/.
Cancer, International Agency for Research on; Absolute numbers \emphColombia, incidence and mortality, females, age [20-74]. Consultado en: 2022/10/23/. Disponible en: https://gco.iarc.fr/overtime/en/dataviz/trends?populations=17000_21800_48400_18800&sexes=2&types=1&multiple_populations=1&cancers=16&years=2010_2018&age_end=14&age_start=4&group_populations=0&group_cancers=0&multiple_cancers=0.
Osorio-Castaño, Jhon H; Pérez-Villa, Marjorie; Montoya-Zapata, Claudia P; Cardona-Restrepo, Fernando A (2020) Características citológicas previas al diagnóstico de cáncer de cérvix en mujeres de Medellín (Colombia). En: Universidad y Salud. Vol. 22; No. 3; pp. 231 - 237;
Martinez, Alicia Azuaga; Malinverno, Manuela Undurraga; Manin, Emily; Petignat, Patrick; Abdulcadir, Jasmine (2021) A cross-sectional study on the prevalence of cervical dysplasia among women with female genital mutilation/cutting. En: Journal of Lower Genital Tract Disease. Vol. 25; No. 3; pp. 210 - 215;
Ruiz Arias, Jair Andrey; Solano Torres, Daniela María (2023) Análisis de las estrategias de prevención de cáncer de cuello uterino a partir de genotipos de alto riesgo del virus del papiloma humano en mujeres de Colombia.
organization, World Health (2014) Cervical Cancer Screening manual.
Khieu, Michelle; Butler, Samantha L (2022) High Grade Squamous Intraepithelial Lesion. En: StatPearls [Internet].: StatPearls Publishing;
Javanbakht, Zahra; Kamravamanesh, Mastaneh; Rasulehvandi, Roumina; Heidary, Amirhossin; Haydari, Mehdi; Kazeminia, Mohsen (2023) Global Prevalence of Cervical Dysplasia: A Systematic Review and Meta-Analysis. En: Indian Journal of Gynecologic Oncology. Vol. 21; No. 3; pp. 62
Moscicki, Anna-Barbara; Schiffman, Mark; Franceschi, Silva (2020) The natural history of human papillomavirus infection in relation to cervical cancer. En: Human papillomavirus. pp. 149 - 160; Elsevier;
Kaggle, MobileODT, Intel (2017) Cervix Types Classification.
BenO, Yau Ben-Or, jljones, Kumar H, Meg Risdal, MRao, Vadim Sherman, Vipul, Wendy Kan (2017) Intel & MobileODT Cervical Cancer Screening. : Kaggle;
Norenhag, Johanna; Du, Juan; Olovsson, Matts; Verstraelen, Hans; Engstrand, Lars; Brusselaers, Nele (2020) The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. En: BJOG: An International Journal of Obstetrics & Gynaecology. Vol. 127; No. 2; pp. 171 - 180;
Cologne, Germany: Institute for Quality; Care (IQWiG), Efficiency in Health (2006) Cervical cancer: Abnormal cells on the cervix (dysplasia). : InformedHealth.org;
Zamora-Julca, Roxana Elizabeth; Ybaseta-Medina, Jorge; Palomino-Herencia, Adrián (2019) Relación entre citología, biopsia y colposcopía en cáncer cérvico uterino. En: Rev. méd. panacea. pp. 31 - 45;
R, Prendiville W. and Sankaranarayanan (2017) Colposcopy and reatment of cervical precancer. : International Agency for Research on Cancer;
Gamboa, Óscar; González, Mauricio; Bonilla, Jairo; Luna, Joaquín; Murillo, Raúl (2019) Visual techniques for cervical cancer screening in Colombia. En: Biomédica. Vol. 39; No. 1; pp. 65 - 74;
Mayeaux Jr, Edward J; Novetsky, Akiva P; Chelmow, David; Garcia, Francisco; Choma, Kim; Liu, Angela H; Papasozomenos, Theognosia; Einstein, Mark H; Massad, L Stewart; Wentzensen, Nicolas; others (2017) ASCCP colposcopy standards: colposcopy quality improvement recommendations for the United States. En: Journal of lower genital tract disease. Vol. 21; No. 4; pp. 242
Hamet, Pavel; Tremblay, Johanne (2017) Artificial intelligence in medicine. En: Metabolism. Vol. 69; pp. S36 - S40;
Española, Real Academia; Inteligencia.
Simmons, Asa B; Chappell, Steven G (1988) Artificial intelligence-definition and practice. En: IEEE journal of oceanic engineering. Vol. 13; No. 2; pp. 14 - 42;
Raschka, Sebastian; Mirjalili, Vahid (2019) Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. : Packt Publishing Ltd;
Helm, J Matthew; Swiergosz, Andrew M; Haeberle, Heather S; Karnuta, Jaret M; Schaffer, Jonathan L; Krebs, Viktor E; Spitzer, Andrew I; Ramkumar, Prem N (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. En: Current reviews in musculoskeletal medicine. Vol. 13; pp. 69 - 76;
Ramyachitra, D; Manikandan, Parasuraman (2014) Imbalanced dataset classification and solutions: a review. En: International Journal of Computing and Business Research (IJCBR). Vol. 5; No. 4; pp. 1 - 29;
Koch, Korbinian; Soll, Marcus (2023) No matter how you slice it: Machine unlearning with SISA comes at the expense of minority classes. pp. 622 - 637; IEEE;
Bourtoule, Lucas; Chandrasekaran, Varun; Choquette-Choo, Christopher A; Jia, Hengrui; Travers, Adelin; Zhang, Baiwu; Lie, David; Papernot, Nicolas (2021) Machine unlearning. pp. 141 - 159; IEEE;
Kaul, Vivek; Enslin, Sarah; Gross, Seth A (2020) History of artificial intelligence in medicine. En: Gastrointestinal endoscopy. Vol. 92; No. 4; pp. 807 - 812;
Secinaro, Silvana; Calandra, Davide; Secinaro, Aurelio; Muthurangu, Vivek; Biancone, Paolo (2021) The role of artificial intelligence in healthcare: a structured literature review. En: BMC medical informatics and decision making. Vol. 21; pp. 1 - 23;
Hamid, Sobia (2016) The opportunities and risks of artificial intelligence in medicine and healthcare.
Zhang, Yudong; Wang, Jiaji; Gorriz, Juan Manuel; Wang, Shuihua (2023) Deep learning and vision transformer for medical image analysis. : MDPI;
Park, Jinhee; Yang, Hyunmo; Roh, Hyun-Jin; Jung, Woonggyu; Jang, Gil-Jin (2022) Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images. En: Cancers. Vol. 14; No. 14; pp. 3400
Yu, Yao; Ma, Jie; Zhao, Weidong; Li, Zhenmin; Ding, Shuai (2021) MSCI: A multistate dataset for colposcopy image classification of cervical cancer screening. En: International Journal of Medical Informatics. Vol. 146; pp. 104352
Payette, Jack; Rachleff, Jake; de Graaf, C (2017) Intel and mobileodt cervical cancer screening kaggle competition: cervix type classification using deep learning and image classification. En: Stanford University.
Alejandro, Bravo-Ort\íz Mario; Brayan, Arteaga-Arteaga Harold; Reinel, Tabares-Soto Kl; Iv\án, Padilla-Buritic\á Jorge; Simón, Orozco-Arias (2021) Clasificación de cáncer cervical usando redes neuronales convolucionales, transferencia de aprendizaje y aumento de datos. En: Revista EIA. Vol. 18; No. 35; pp. 100 - 111;
Saini, Sumindar Kaur; Bansal, Vasudha; Kaur, Ravinder; Juneja, Mamta (2020) ColpoNet for automated cervical cancer screening using colposcopy images. En: Machine Vision and Applications. Vol. 31; pp. 1 - 15;
Darwish, Manal; Altabel, Mohamad Ziad; Abiyev, Rahib H (2023) Enhancing Cervical Pre-Cancerous Classification Using Advanced Vision Transformer. En: Diagnostics. Vol. 13; No. 18; pp. 2884
Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening.
Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening.
Keras (2023) Keras Applications.
Szegedy, Christian; Ioffe, Sergey; Vanhoucke, Vincent; Alemi, Alexander (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Vol. 31;
Shi, Jian-Feng; Ulrich, Steve; Ruel, Stéphane (2018) Cubesat simulation and detection using monocular camera images and convolutional neural networks. pp. 1604
Howard, Andrew G; Zhu, Menglong; Chen, Bo; Kalenichenko, Dmitry; Wang, Weijun; Weyand, Tobias; Andreetto, Marco; Adam, Hartwig (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. En: arXiv preprint arXiv:1704.04861.
Kadam, Kalyani Dhananjay; Ahirrao, Swati; Kotecha, Ketan; others (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask R-CNN with MobileNet V1. En: Computational Intelligence and Neuroscience. Vol. 2022;
Chollet, Francois (2021) Deep learning with Python. : Simon and Schuster;
Tensorflow (2022) Transfer Learning and fine-tuning.
Gerón, Aurélien (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. : O'Reilly;
Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017) Attention is all you need. En: Advances in neural information processing systems. Vol. 30;
Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; others (2020) An image is worth 16x16 words: Transformers for image recognition at scale. En: arXiv preprint arXiv:2010.11929.
Lee, Seung Hoon; Lee, Seunghyun; Song, Byung Cheol (2021) Vision transformer for small-size datasets. En: arXiv preprint arXiv:2112.13492.
Fang, Yuxin; Yang, Shusheng; Wang, Shijie; Ge, Yixiao; Shan, Ying; Wang, Xinggang (2023) Unleashing vanilla vision transformer with masked image modeling for object detection. pp. 6244 - 6253;
S, Narkhede (2018) Understanding Confusion Matrix.
C, Zelada (2017) Evaluación de modelos de clasificación.
McHugh, Mary L (2012) Interrater reliability: the kappa statistic. En: Biochemia medica. Vol. 22; No. 3; pp. 276 - 282;
Alberg, Anthony J; Park, Ji Wan; Hager, Brant W; Brock, Malcolm V; Diener-West, Marie (2004) The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests. En: Journal of general internal medicine. Vol. 19; No. 5p1; pp. 460 - 465;
Godbole, Shantanu; Sarawagi, Sunita (2004) Discriminative methods for multi-labeled classification. pp. 22 - 30; Springer;
Society, The American Cancer (2021) The American Cancer Society Guidelines for the Prevention and Early Detection of Cervical Cancer.
Fontham, Elizabeth TH; Wolf, Andrew MD; Church, Timothy R; Etzioni, Ruth; Flowers, Christopher R; Herzig, Abbe; Guerra, Carmen E; Oeffinger, Kevin C; Shih, Ya-Chen Tina; Walter, Louise C; others (2020) Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. En: CA: a cancer journal for clinicians. Vol. 70; No. 5; pp. 321 - 346;
Staats, Paul N; Davey, Diane Davis; Witt, Benjamin L; Ghofrani, Mohiedean; Zhao, Chengquan; Dodd, Leslie G; Goodrich, Kelly; Husain, Mujtaba; Kurtycz, Daniel FI; Russell, Donna K; others (2022) Performance of specific morphologic features in distinguishing low-grade squamous intraepithelial lesions from high-grade squamous intraepithelial lesions in borderline cases: a College of American Pathologists Cytopathology Committee multiobserver study. En: Journal of the American Society of Cytopathology. Vol. 11; No. 2; pp. 102 - 113;
Sellors, John W; Sankaranarayanan, R (2003) La colposcopia y el tratamiento de la neoplasia intraepitelial cervical: Manual para principiantes. En: Lyon, Francia: International Agency for Research on Cancer (IARC). Vol. 140;
Cáncer, Ministerio de Salud: Observatorio Nacional del (2024) Ruta Integral de Atención en Salud, cáncer de cuello uterino.
Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun (2017) Artificial intelligence in healthcare: past, present and future. En: Stroke and vascular neurology. Vol. 2; No. 4;
Prendiville, W; Sankaranarayanan, R (2017) Colposcopy and Treatment of Cervical Precancer. En: IARC Technical Report. Vol. 45; Lyon (FR): International Agency for Research on Cancer;
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/22910ee1-6e7f-40e9-a76b-ed6f72234daf/download
https://repository.urosario.edu.co/bitstreams/dc55ef69-02f8-4c3d-9fa2-488d9897bf0b/download
https://repository.urosario.edu.co/bitstreams/cebafcc8-8e9b-4ab7-984d-f6a917e2de05/download
https://repository.urosario.edu.co/bitstreams/65286eb1-f070-409a-9196-923bbdcd041f/download
https://repository.urosario.edu.co/bitstreams/af4b9a46-1065-443d-a3e4-672672445493/download
https://repository.urosario.edu.co/bitstreams/96321f2e-a0e6-4c1f-8b42-2c7df0d2f31e/download
bitstream.checksum.fl_str_mv 74da90719e7edc8d6325df51b78fbdca
5ed0a499ffb1c7c335b4154bc627dde7
b2825df9f458e9d5d96ee8b7cd74fde6
adb7af3ef071a784ffe1b544b9a344ab
bb71c6f488e2ff8728af471bf270ffe1
032b0642f7baa766b48a0f7c5c6e09d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167640493522944
spelling Perdomo Charry, Oscar Juliánd6ae6b29-7412-48ab-a525-d554ba2044fe-1Orjuela Cañón, Álvaro David01e734ed-bd0a-4a02-beb2-863079eef653-1Tenjo Castaño, Camilo AntonioMagíster en Ingeniería BiomédicaMagíster en Ingeniería BiomédicaMaestríaFull time1516b1cf-f2b7-419e-be00-b3b769eeabad-12024-04-23T13:08:29Z2024-04-23T13:08:29Z2024-03-20Los diagnósticos incorrectos de Neoplasia Intraepitelial Cervical (NIC), impactan directamente en el aumento de la tasa de mortalidad por cáncer cervical. Específicamente, América Latina ha estado entre las regiones con mayores tasas de incidencia y mortalidad en los últimos años. Actualmente existen investigaciones que se enfocan en su prevención teniendo como objetivo el diagnóstico temprano y seguimiento de su lesión predecesora, la Neoplasia Intraepitelial Cervical, también llamada Displasia Cervical. Por tanto, las metodologías basadas en visión computacional y aprendizaje de máquina son vitales, para el desarrollo de herramientas de asistencia diagnóstica temprana para el apoyo de especialistas. El objetivo de esta propuesta de trabajo de grado de maestría es la aplicación de arquitecturas de Aprendizaje Profundo y Transformadores de Visión para clasificar los grados de avance de la Neoplasia Intraepitelial Cervical usando imágenes de colposcopía obtenidas de la base de datos libre generada para el reto Intel & Mobile ODT Cervical Cancer Screening.Misdiagnosis of Cervical Intraepithelial Neoplasia (CIN) has a direct impact on the increase in cervical cancer mortality rates. Specifically, Latin America has been among the regions with the highest incidence and mortality rates in recent years. Currently there is research that focuses on its prevention aiming at early diagnosis and follow-up of its predecessor lesion, Cervical Intraepithelial Neoplasia, also called Cervical Dysplasia. Therefore, methodologies based on computer vision and machine learning are vital for the development of early diagnostic assistance tools for the support of specialists. The objective of this master's degree work proposal is the application of Deep Learning architectures and Vision Transformers to classify Cervical Intraepithelial Neoplasia progression grades using colposcopy images obtained from the free database generated for the Intel & Mobile ODT Cervical Cancer Screening challenge.45 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/42468spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludMaestría en Ingeniería BiomédicaAttribution-ShareAlike 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-sa/4.0/http://purl.org/coar/access_right/c_abf2Shrestha, Aamod Dhoj; Neupane, Dinesh; Vedsted, Peter; Kallestrup, Per (2018) Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. En: Asian Pacific journal of cancer prevention: APJCP. Vol. 19; No. 2; pp. 319 Arbyn, Marc; Weiderpass, Elisabete; Bruni, Laia; de Sanjosé, Silvia; Saraiya, Mona; Ferlay, Jacques; Bray, Freddie (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. En: The Lancet Global Health. Vol. 8; No. 2; pp. e191 - e203;Cancer, World Health Organization: International Agency for Research on; Global Cancer Observatory. Consultado en: 2023/04/24/.Público, Ministerio de Salud y Protección Social & Ministerio de Hacienda y Crédito; Cuenta de Alto Costo: Día Mundial del cáncer de cérvix 2022. Consultado en: 2023/04/24/.Cancer, International Agency for Research on; Absolute numbers \emphColombia, incidence and mortality, females, age [20-74]. Consultado en: 2022/10/23/. Disponible en: https://gco.iarc.fr/overtime/en/dataviz/trends?populations=17000_21800_48400_18800&sexes=2&types=1&multiple_populations=1&cancers=16&years=2010_2018&age_end=14&age_start=4&group_populations=0&group_cancers=0&multiple_cancers=0.Osorio-Castaño, Jhon H; Pérez-Villa, Marjorie; Montoya-Zapata, Claudia P; Cardona-Restrepo, Fernando A (2020) Características citológicas previas al diagnóstico de cáncer de cérvix en mujeres de Medellín (Colombia). En: Universidad y Salud. Vol. 22; No. 3; pp. 231 - 237;Martinez, Alicia Azuaga; Malinverno, Manuela Undurraga; Manin, Emily; Petignat, Patrick; Abdulcadir, Jasmine (2021) A cross-sectional study on the prevalence of cervical dysplasia among women with female genital mutilation/cutting. En: Journal of Lower Genital Tract Disease. Vol. 25; No. 3; pp. 210 - 215;Ruiz Arias, Jair Andrey; Solano Torres, Daniela María (2023) Análisis de las estrategias de prevención de cáncer de cuello uterino a partir de genotipos de alto riesgo del virus del papiloma humano en mujeres de Colombia. organization, World Health (2014) Cervical Cancer Screening manual. Khieu, Michelle; Butler, Samantha L (2022) High Grade Squamous Intraepithelial Lesion. En: StatPearls [Internet].: StatPearls Publishing;Javanbakht, Zahra; Kamravamanesh, Mastaneh; Rasulehvandi, Roumina; Heidary, Amirhossin; Haydari, Mehdi; Kazeminia, Mohsen (2023) Global Prevalence of Cervical Dysplasia: A Systematic Review and Meta-Analysis. En: Indian Journal of Gynecologic Oncology. Vol. 21; No. 3; pp. 62 Moscicki, Anna-Barbara; Schiffman, Mark; Franceschi, Silva (2020) The natural history of human papillomavirus infection in relation to cervical cancer. En: Human papillomavirus. pp. 149 - 160; Elsevier;Kaggle, MobileODT, Intel (2017) Cervix Types Classification. BenO, Yau Ben-Or, jljones, Kumar H, Meg Risdal, MRao, Vadim Sherman, Vipul, Wendy Kan (2017) Intel & MobileODT Cervical Cancer Screening. : Kaggle;Norenhag, Johanna; Du, Juan; Olovsson, Matts; Verstraelen, Hans; Engstrand, Lars; Brusselaers, Nele (2020) The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. En: BJOG: An International Journal of Obstetrics & Gynaecology. Vol. 127; No. 2; pp. 171 - 180;Cologne, Germany: Institute for Quality; Care (IQWiG), Efficiency in Health (2006) Cervical cancer: Abnormal cells on the cervix (dysplasia). : InformedHealth.org;Zamora-Julca, Roxana Elizabeth; Ybaseta-Medina, Jorge; Palomino-Herencia, Adrián (2019) Relación entre citología, biopsia y colposcopía en cáncer cérvico uterino. En: Rev. méd. panacea. pp. 31 - 45;R, Prendiville W. and Sankaranarayanan (2017) Colposcopy and reatment of cervical precancer. : International Agency for Research on Cancer;Gamboa, Óscar; González, Mauricio; Bonilla, Jairo; Luna, Joaquín; Murillo, Raúl (2019) Visual techniques for cervical cancer screening in Colombia. En: Biomédica. Vol. 39; No. 1; pp. 65 - 74;Mayeaux Jr, Edward J; Novetsky, Akiva P; Chelmow, David; Garcia, Francisco; Choma, Kim; Liu, Angela H; Papasozomenos, Theognosia; Einstein, Mark H; Massad, L Stewart; Wentzensen, Nicolas; others (2017) ASCCP colposcopy standards: colposcopy quality improvement recommendations for the United States. En: Journal of lower genital tract disease. Vol. 21; No. 4; pp. 242 Hamet, Pavel; Tremblay, Johanne (2017) Artificial intelligence in medicine. En: Metabolism. Vol. 69; pp. S36 - S40;Española, Real Academia; Inteligencia. Simmons, Asa B; Chappell, Steven G (1988) Artificial intelligence-definition and practice. En: IEEE journal of oceanic engineering. Vol. 13; No. 2; pp. 14 - 42;Raschka, Sebastian; Mirjalili, Vahid (2019) Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. : Packt Publishing Ltd;Helm, J Matthew; Swiergosz, Andrew M; Haeberle, Heather S; Karnuta, Jaret M; Schaffer, Jonathan L; Krebs, Viktor E; Spitzer, Andrew I; Ramkumar, Prem N (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. En: Current reviews in musculoskeletal medicine. Vol. 13; pp. 69 - 76;Ramyachitra, D; Manikandan, Parasuraman (2014) Imbalanced dataset classification and solutions: a review. En: International Journal of Computing and Business Research (IJCBR). Vol. 5; No. 4; pp. 1 - 29;Koch, Korbinian; Soll, Marcus (2023) No matter how you slice it: Machine unlearning with SISA comes at the expense of minority classes. pp. 622 - 637; IEEE;Bourtoule, Lucas; Chandrasekaran, Varun; Choquette-Choo, Christopher A; Jia, Hengrui; Travers, Adelin; Zhang, Baiwu; Lie, David; Papernot, Nicolas (2021) Machine unlearning. pp. 141 - 159; IEEE;Kaul, Vivek; Enslin, Sarah; Gross, Seth A (2020) History of artificial intelligence in medicine. En: Gastrointestinal endoscopy. Vol. 92; No. 4; pp. 807 - 812;Secinaro, Silvana; Calandra, Davide; Secinaro, Aurelio; Muthurangu, Vivek; Biancone, Paolo (2021) The role of artificial intelligence in healthcare: a structured literature review. En: BMC medical informatics and decision making. Vol. 21; pp. 1 - 23;Hamid, Sobia (2016) The opportunities and risks of artificial intelligence in medicine and healthcare. Zhang, Yudong; Wang, Jiaji; Gorriz, Juan Manuel; Wang, Shuihua (2023) Deep learning and vision transformer for medical image analysis. : MDPI;Park, Jinhee; Yang, Hyunmo; Roh, Hyun-Jin; Jung, Woonggyu; Jang, Gil-Jin (2022) Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images. En: Cancers. Vol. 14; No. 14; pp. 3400 Yu, Yao; Ma, Jie; Zhao, Weidong; Li, Zhenmin; Ding, Shuai (2021) MSCI: A multistate dataset for colposcopy image classification of cervical cancer screening. En: International Journal of Medical Informatics. Vol. 146; pp. 104352 Payette, Jack; Rachleff, Jake; de Graaf, C (2017) Intel and mobileodt cervical cancer screening kaggle competition: cervix type classification using deep learning and image classification. En: Stanford University.Alejandro, Bravo-Ort\íz Mario; Brayan, Arteaga-Arteaga Harold; Reinel, Tabares-Soto Kl; Iv\án, Padilla-Buritic\á Jorge; Simón, Orozco-Arias (2021) Clasificación de cáncer cervical usando redes neuronales convolucionales, transferencia de aprendizaje y aumento de datos. En: Revista EIA. Vol. 18; No. 35; pp. 100 - 111;Saini, Sumindar Kaur; Bansal, Vasudha; Kaur, Ravinder; Juneja, Mamta (2020) ColpoNet for automated cervical cancer screening using colposcopy images. En: Machine Vision and Applications. Vol. 31; pp. 1 - 15;Darwish, Manal; Altabel, Mohamad Ziad; Abiyev, Rahib H (2023) Enhancing Cervical Pre-Cancerous Classification Using Advanced Vision Transformer. En: Diagnostics. Vol. 13; No. 18; pp. 2884 Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Kaggle, MobileODT, Intel (2017) Intel & MobileODT Cervical Cancer Screening. Keras (2023) Keras Applications. Szegedy, Christian; Ioffe, Sergey; Vanhoucke, Vincent; Alemi, Alexander (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Vol. 31;Shi, Jian-Feng; Ulrich, Steve; Ruel, Stéphane (2018) Cubesat simulation and detection using monocular camera images and convolutional neural networks. pp. 1604 Howard, Andrew G; Zhu, Menglong; Chen, Bo; Kalenichenko, Dmitry; Wang, Weijun; Weyand, Tobias; Andreetto, Marco; Adam, Hartwig (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. En: arXiv preprint arXiv:1704.04861.Kadam, Kalyani Dhananjay; Ahirrao, Swati; Kotecha, Ketan; others (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask R-CNN with MobileNet V1. En: Computational Intelligence and Neuroscience. Vol. 2022;Chollet, Francois (2021) Deep learning with Python. : Simon and Schuster;Tensorflow (2022) Transfer Learning and fine-tuning. Gerón, Aurélien (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. : O'Reilly;Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017) Attention is all you need. En: Advances in neural information processing systems. Vol. 30;Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; others (2020) An image is worth 16x16 words: Transformers for image recognition at scale. En: arXiv preprint arXiv:2010.11929.Lee, Seung Hoon; Lee, Seunghyun; Song, Byung Cheol (2021) Vision transformer for small-size datasets. En: arXiv preprint arXiv:2112.13492.Fang, Yuxin; Yang, Shusheng; Wang, Shijie; Ge, Yixiao; Shan, Ying; Wang, Xinggang (2023) Unleashing vanilla vision transformer with masked image modeling for object detection. pp. 6244 - 6253;S, Narkhede (2018) Understanding Confusion Matrix. C, Zelada (2017) Evaluación de modelos de clasificación. McHugh, Mary L (2012) Interrater reliability: the kappa statistic. En: Biochemia medica. Vol. 22; No. 3; pp. 276 - 282;Alberg, Anthony J; Park, Ji Wan; Hager, Brant W; Brock, Malcolm V; Diener-West, Marie (2004) The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests. En: Journal of general internal medicine. Vol. 19; No. 5p1; pp. 460 - 465;Godbole, Shantanu; Sarawagi, Sunita (2004) Discriminative methods for multi-labeled classification. pp. 22 - 30; Springer;Society, The American Cancer (2021) The American Cancer Society Guidelines for the Prevention and Early Detection of Cervical Cancer. Fontham, Elizabeth TH; Wolf, Andrew MD; Church, Timothy R; Etzioni, Ruth; Flowers, Christopher R; Herzig, Abbe; Guerra, Carmen E; Oeffinger, Kevin C; Shih, Ya-Chen Tina; Walter, Louise C; others (2020) Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. En: CA: a cancer journal for clinicians. Vol. 70; No. 5; pp. 321 - 346;Staats, Paul N; Davey, Diane Davis; Witt, Benjamin L; Ghofrani, Mohiedean; Zhao, Chengquan; Dodd, Leslie G; Goodrich, Kelly; Husain, Mujtaba; Kurtycz, Daniel FI; Russell, Donna K; others (2022) Performance of specific morphologic features in distinguishing low-grade squamous intraepithelial lesions from high-grade squamous intraepithelial lesions in borderline cases: a College of American Pathologists Cytopathology Committee multiobserver study. En: Journal of the American Society of Cytopathology. Vol. 11; No. 2; pp. 102 - 113;Sellors, John W; Sankaranarayanan, R (2003) La colposcopia y el tratamiento de la neoplasia intraepitelial cervical: Manual para principiantes. En: Lyon, Francia: International Agency for Research on Cancer (IARC). Vol. 140;Cáncer, Ministerio de Salud: Observatorio Nacional del (2024) Ruta Integral de Atención en Salud, cáncer de cuello uterino. Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun (2017) Artificial intelligence in healthcare: past, present and future. En: Stroke and vascular neurology. Vol. 2; No. 4;Prendiville, W; Sankaranarayanan, R (2017) Colposcopy and Treatment of Cervical Precancer. En: IARC Technical Report. Vol. 45; Lyon (FR): International Agency for Research on Cancer;instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAprendizaje automáticoAprendizaje profundoColposcopíaDisplasia cervicalNeoplasia intraepitelial cervicalTransformadores de visiónColposcopyCervical DysplasiaCervical Intraepithelial NeoplasiaMachine LearningDeep LearningClassificationVision TransformersIdentificación de neoplasia intraepitelial cervical mediante el uso de aprendizaje de máquinaCervical Intraepithelial Neoplasia identification using machine learningbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludORIGINALIdentificacion_de_neoplasia_intraepitelial_cervical.pdfIdentificacion_de_neoplasia_intraepitelial_cervical.pdfapplication/pdf1601328https://repository.urosario.edu.co/bitstreams/22910ee1-6e7f-40e9-a76b-ed6f72234daf/download74da90719e7edc8d6325df51b78fbdcaMD51Bibliografia_Identificacion_de_neoplasia_intraepitelial.risBibliografia_Identificacion_de_neoplasia_intraepitelial.risapplication/x-research-info-systems18931https://repository.urosario.edu.co/bitstreams/dc55ef69-02f8-4c3d-9fa2-488d9897bf0b/download5ed0a499ffb1c7c335b4154bc627dde7MD55LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/cebafcc8-8e9b-4ab7-984d-f6a917e2de05/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81154https://repository.urosario.edu.co/bitstreams/65286eb1-f070-409a-9196-923bbdcd041f/downloadadb7af3ef071a784ffe1b544b9a344abMD54TEXTIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.txtIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.txtExtracted texttext/plain69344https://repository.urosario.edu.co/bitstreams/af4b9a46-1065-443d-a3e4-672672445493/downloadbb71c6f488e2ff8728af471bf270ffe1MD56THUMBNAILIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.jpgIdentificacion_de_neoplasia_intraepitelial_cervical.pdf.jpgGenerated Thumbnailimage/jpeg3073https://repository.urosario.edu.co/bitstreams/96321f2e-a0e6-4c1f-8b42-2c7df0d2f31e/download032b0642f7baa766b48a0f7c5c6e09d7MD5710336/42468oai:repository.urosario.edu.co:10336/424682024-04-24 03:03:08.208http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==