Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO

Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otra...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/31628
Acceso en línea:
https://doi.org/10.48713/10336_31628
https://repository.urosario.edu.co/handle/10336/31628
Palabra clave:
Citotoxicidad
Puntos de Carbono
Líneas celulares
Ingeniería & operaciones afines
Ciencias médicas, Medicina
Cytotoxicity
Carbon dots
Cell lineages
Ingeniería & operaciones afines
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id EDOCUR2_a46e4605c022d8ef88283e439dab7d54
oai_identifier_str oai:repository.urosario.edu.co:10336/31628
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
dc.title.TranslatedTitle.spa.fl_str_mv Cytotoxic effects of the carbon dots on the cell lineages 3T3-l1 and VERO
title Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
spellingShingle Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
Citotoxicidad
Puntos de Carbono
Líneas celulares
Ingeniería & operaciones afines
Ciencias médicas, Medicina
Cytotoxicity
Carbon dots
Cell lineages
Ingeniería & operaciones afines
title_short Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
title_full Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
title_fullStr Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
title_full_unstemmed Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
title_sort Evaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VERO
dc.contributor.advisor.none.fl_str_mv Ondo Méndez, Alejandro Oyono
Rodríguez Burbano, Diana Consuelo
dc.subject.spa.fl_str_mv Citotoxicidad
Puntos de Carbono
Líneas celulares
topic Citotoxicidad
Puntos de Carbono
Líneas celulares
Ingeniería & operaciones afines
Ciencias médicas, Medicina
Cytotoxicity
Carbon dots
Cell lineages
Ingeniería & operaciones afines
dc.subject.ddc.spa.fl_str_mv Ingeniería & operaciones afines
Ciencias médicas, Medicina
dc.subject.keyword.spa.fl_str_mv Cytotoxicity
Carbon dots
Cell lineages
dc.subject.lemb.spa.fl_str_mv Ingeniería & operaciones afines
description Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otras aplicaciones como la liberación controlada de fármacos y los biosensores. Dado su alto valor en técnicas de diagnóstico y tratamiento del cáncer, cuando se habla de la toxicidad intrínseca de este material, la literatura se ha preocupado mayormente por determinar su citotoxicidad en células cancerosas. Sin embargo, teniendo en cuenta que los PC podrían acumularse también en órganos sanos o en tejido sano que rodea el tumor, resulta de capital importancia determinar su toxicidad en células sanas. En consecuencia, como objetivo de este proyecto se planteó sintetizar PC y determinar citotoxicidad en las líneas celulares derivadas de tejido sano 3T3-L1 (preadipocitos) y Vero (riñón). Para ello se sintetizaron puntos de carbono a partir de ácido cítrico como precursor y etanol y N, N-Dimetilformamida. La citotoxicidad se determinó con los ensayos de Azul Tripán y MTT. Se establecieron dos controles uno positivo (tóxico) y uno negativo (no tóxico). Las pruebas estadísticas indicaron que los PC no mostraron citotoxicidad detectable en las células tumores a concentraciones entre 50 y 500 μg/mL. Con la realización de este trabajo se establecieron las bases de la citotoxicidad de una nanoplataforma de PC en su primera etapa de desarrollo, cuyo fin último será la aplicación de radioterapia.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-17T13:35:54Z
dc.date.available.none.fl_str_mv 2021-06-17T13:35:54Z
dc.date.created.none.fl_str_mv 2021-05-26
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Trabajo de grado
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_31628
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/31628
url https://doi.org/10.48713/10336_31628
https://repository.urosario.edu.co/handle/10336/31628
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 32 pp.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.
G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.
V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.
V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634.
C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.
J. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ï.
X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.
Y. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.
M. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.
T. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.
S. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.
L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.
L. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.
V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.
X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.
F. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.
M. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.
J. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860.
F. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.
C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.
Y.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.
“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).
“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).
J. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.
F. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.
B. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.
A. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.
Ö. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923.
J. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.
T. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.
P. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.
S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.
Y. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678k.
M. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.
J.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.
A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.
N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.
S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.
C. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.
S. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112.
Ashmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.
N. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11.
R. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.
“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.
J. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.
L. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.
C. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/502baa65-3e40-45d5-b95b-389528d660b2/download
https://repository.urosario.edu.co/bitstreams/b544e30c-8503-4284-ae35-c946641e1d90/download
https://repository.urosario.edu.co/bitstreams/653906f9-6b06-46b9-b6b5-f8db45f3fae4/download
https://repository.urosario.edu.co/bitstreams/9e8b11a2-b836-429b-8848-332a33d93a80/download
https://repository.urosario.edu.co/bitstreams/4f17dcbf-9905-4c2f-b60a-b5540ef57a5a/download
bitstream.checksum.fl_str_mv 217700a34da79ed616c2feb68d4c5e06
10394549826cfb29e07a443bb25b407c
fab9d9ed61d64f6ac005dee3306ae77e
bce0aca447a2efd4930bf215653c8608
8ff8a2695172732a3352a9090a41c813
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167622762102784
spelling Ondo Méndez, Alejandro Oyono79831981600Rodríguez Burbano, Diana Consuelo52994699600Lancheros Vega, María CamilaIngeniero BiomédicoFull time7b8449ea-2264-4aec-9a3c-2c8712cfc29c6002021-06-17T13:35:54Z2021-06-17T13:35:54Z2021-05-26Los puntos de carbono (PC) son nanoparículas a base de carbono, con diámetros de 10 nm en promedio. Se destacan por sus propiedades fluorescentes, lo que ha permitido plantear su aplicación en el desarrollo de técnicas de bioimagenología y radioterapia. No obstante, pueden utilizarse también en otras aplicaciones como la liberación controlada de fármacos y los biosensores. Dado su alto valor en técnicas de diagnóstico y tratamiento del cáncer, cuando se habla de la toxicidad intrínseca de este material, la literatura se ha preocupado mayormente por determinar su citotoxicidad en células cancerosas. Sin embargo, teniendo en cuenta que los PC podrían acumularse también en órganos sanos o en tejido sano que rodea el tumor, resulta de capital importancia determinar su toxicidad en células sanas. En consecuencia, como objetivo de este proyecto se planteó sintetizar PC y determinar citotoxicidad en las líneas celulares derivadas de tejido sano 3T3-L1 (preadipocitos) y Vero (riñón). Para ello se sintetizaron puntos de carbono a partir de ácido cítrico como precursor y etanol y N, N-Dimetilformamida. La citotoxicidad se determinó con los ensayos de Azul Tripán y MTT. Se establecieron dos controles uno positivo (tóxico) y uno negativo (no tóxico). Las pruebas estadísticas indicaron que los PC no mostraron citotoxicidad detectable en las células tumores a concentraciones entre 50 y 500 μg/mL. Con la realización de este trabajo se establecieron las bases de la citotoxicidad de una nanoplataforma de PC en su primera etapa de desarrollo, cuyo fin último será la aplicación de radioterapia.Carbon Dots (CDs) are carbon based nanoparticles with average diameters of 10 nm. They are distinguished for their fluorescent properties, which has allowed their application in the development of techniques for bioimage and radiotherapy. Nevertheless they have other applications such as controlled drug release and biosensors. Given their importance in techniques for treatment and diagnostic, when it comes to their intrinsic toxicity literature has worried more about determining cytotoxicity on cancer cell lines. Taking into account that CDs may accumulate in healthy organs or tissue that surrounds tumors, it is of great importance to determine their cytotoxicity on healthy cell lines. As a consequence, the objective of this project was to determine the cytotoxicity of CDs on the two cell lineages derived from healthy tissue 3T3-L1 (preadipocytes) and Vero (Kidney). For this purpose, carbon dots were synthesized using citric acid as precursor and ethanol and N, N-Dimethylformamide as solvents, cytotoxicity was measured using the Trypan Blue and MTT assays, two controls were stablished a positive control (toxic) and a negative control (non-toxic). The statistical analysis did not show detectable cytotoxicity at concentrations of CDs in the range from 50 to 500 μg/mL. With this thesis work the bases of the cytotoxicity of a nanoplatform of carbon dots in the first stage of development were established, whose final purpose is to create a theranostic platform for radiotherapy.32 pp.application/pdfhttps://doi.org/10.48713/10336_31628 https://repository.urosario.edu.co/handle/10336/31628spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634.C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.J. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ï.X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.Y. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.M. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.T. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.S. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.L. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.F. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.M. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.J. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860.F. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.Y.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).J. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.F. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.B. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.A. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.Ö. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923.J. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.T. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.P. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.Y. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678k.M. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.J.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.C. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.S. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112.Ashmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.N. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11.R. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.J. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.L. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.C. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCitotoxicidadPuntos de CarbonoLíneas celularesIngeniería & operaciones afines620600Ciencias médicas, Medicina610600CytotoxicityCarbon dotsCell lineagesIngeniería & operaciones afinesEvaluación del efecto citotóxico de puntos de carbono en células 3T3-l1 y VEROCytotoxic effects of the carbon dots on the cell lineages 3T3-l1 and VERObachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.urosario.edu.co/bitstreams/502baa65-3e40-45d5-b95b-389528d660b2/download217700a34da79ed616c2feb68d4c5e06MD53ORIGINALTrabajo-DirigidoMCLVfinal.pdfTrabajo-DirigidoMCLVfinal.pdfapplication/pdf865280https://repository.urosario.edu.co/bitstreams/b544e30c-8503-4284-ae35-c946641e1d90/download10394549826cfb29e07a443bb25b407cMD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/653906f9-6b06-46b9-b6b5-f8db45f3fae4/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52TEXTTrabajo-DirigidoMCLVfinal.pdf.txtTrabajo-DirigidoMCLVfinal.pdf.txtExtracted texttext/plain72273https://repository.urosario.edu.co/bitstreams/9e8b11a2-b836-429b-8848-332a33d93a80/downloadbce0aca447a2efd4930bf215653c8608MD54THUMBNAILTrabajo-DirigidoMCLVfinal.pdf.jpgTrabajo-DirigidoMCLVfinal.pdf.jpgGenerated Thumbnailimage/jpeg2745https://repository.urosario.edu.co/bitstreams/4f17dcbf-9905-4c2f-b60a-b5540ef57a5a/download8ff8a2695172732a3352a9090a41c813MD5510336/31628oai:repository.urosario.edu.co:10336/316282021-06-24 12:39:16.155http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=