¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/34795
- Acceso en línea:
- https://doi.org/10.48713/10336_34795
https://repository.urosario.edu.co/handle/10336/34795
- Palabra clave:
- Mimetismo mülleriano
Mariposas heliconius
Contraste cromático y acromático
Compuestos cianogénicos
Aposemátismo
Biología
Müllerian mimicry
Heliconius butterflies
Chromatic and achromatic contrast
Cyanogenic compounds
Aposematism
- Rights
- License
- Restringido (Temporalmente bloqueado)
id |
EDOCUR2_a159953cdd51bbf10509367fe835d1db |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/34795 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.es.fl_str_mv |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
dc.title.TranslatedTitle.es.fl_str_mv |
Is the aposematic coloration of heliconius butterflies an honest sign of their toxicity? |
title |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
spellingShingle |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? Mimetismo mülleriano Mariposas heliconius Contraste cromático y acromático Compuestos cianogénicos Aposemátismo Biología Müllerian mimicry Heliconius butterflies Chromatic and achromatic contrast Cyanogenic compounds Aposematism |
title_short |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
title_full |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
title_fullStr |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
title_full_unstemmed |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
title_sort |
¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad? |
dc.contributor.advisor.none.fl_str_mv |
Salazar, Camilo Rueda, Nicol |
dc.subject.es.fl_str_mv |
Mimetismo mülleriano Mariposas heliconius Contraste cromático y acromático Compuestos cianogénicos Aposemátismo |
topic |
Mimetismo mülleriano Mariposas heliconius Contraste cromático y acromático Compuestos cianogénicos Aposemátismo Biología Müllerian mimicry Heliconius butterflies Chromatic and achromatic contrast Cyanogenic compounds Aposematism |
dc.subject.ddc.es.fl_str_mv |
Biología |
dc.subject.keyword.es.fl_str_mv |
Müllerian mimicry Heliconius butterflies Chromatic and achromatic contrast Cyanogenic compounds Aposematism |
description |
Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay sobre la coloración y la toxicidad de este grupo de mariposas, la relación entre ambos caracteres aún no ha sido estudiada y se desconoce si la señal de advertencia es cuantitativamente honesta. En este estudio se cuantificaron los compuestos cianogénicos y los contrastes de color de dos anillos miméticos bajo condiciones de luz y dos modelos de visión de las aves. La relación entre estas dos variables se evaluó por medio de la implementación de modelos lineales (lm). No se encontró correlación entre la coloración y la toxicidad, pero si entre esta última y las especies. Adicionalmente, se encontró variación entre los perfiles químicos de especies de un mismo anillo, así como también entre localidades geográficas. La limitación del recurso, las relaciones filogenéticas y otros factores adicionales podrían contribuir a explicar la asociación de la toxicidad a un mismo patrón de coloración. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-25T20:14:28Z |
dc.date.available.none.fl_str_mv |
2022-08-25T20:14:28Z |
dc.date.created.none.fl_str_mv |
2022-08-08 |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2024-08-25 |
dc.type.es.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.es.fl_str_mv |
Trabajo de grado |
dc.type.spa.es.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_34795 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/34795 |
url |
https://doi.org/10.48713/10336_34795 https://repository.urosario.edu.co/handle/10336/34795 |
dc.language.iso.es.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.es.fl_str_mv |
Restringido (Temporalmente bloqueado) |
rights_invalid_str_mv |
Restringido (Temporalmente bloqueado) http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.es.fl_str_mv |
25 pp |
dc.format.mimetype.es.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Facultad de Ciencias Naturales |
dc.publisher.program.none.fl_str_mv |
Biología |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.es.fl_str_mv |
Arias, M., Meichanetzoglou, A., Elias, M., Rosser, N., de-Silva, D., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evolutionary Biology, 16(1). https://doi.org/10.1186/s12862-016-0843-5 Balogh, A., Gamberale-Stille, G., & Leimar, O. (2008). Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 76(5), 1591-1599. https://doi.org/10.1016/j.anbehav.2008.07.017 Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. (2021). Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/. Bergvall, U., & Leimar, O. (2005). Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology, 86(9), 2450-2460. https://doi.org/10.1890/04-0978 Blount, J., Speed, M., Ruxton, G., & Stephens, P. (2008). Warning displays may function as honest signals of toxicity. Proceedings Of The Royal Society B: Biological Sciences, 276(1658), 871-877. https://doi.org/10.1098/rspb.2008.1407 Blount, J., Rowland, H., Mitchell, C., Speed, M., Ruxton, G., Endler, J., & Brower, L. (2021). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. https://doi.org/10.1101/2021.12.08.471400 Briolat, E., Burdfield-Steel, E., Paul, S., Rönkä, K., Seymoure, B., Stankowich, T., & Stuckert, A. (2018). Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 94(2), 388-414. https://doi.org/10.1111/brv.12460 Briolat, E., Zagrobelny, M., Olsen, C., Blount, J., & Stevens, M. (2018). Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.) *. Evolution, 72(7), 1460-1474. https://doi.org/10.1111/evo.13505 Cortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal Of Evolutionary Biology, 23(7), 1509-1518. https://doi.org/10.1111/j.1420-9101.2010.02018.x Courville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends In Cognitive Sciences, 10(7), 294-300. https://doi.org/10.1016/j.tics.2006.05.004 Darst, C., Cummings, M., & Cannatella, D. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings Of The National Academy Of Sciences, 103(15), 5852-5857. https://doi.org/10.1073/pnas.0600625103 Dell’Aglio, D., Troscianko, J., Stevens, M., McMillan, W., & Jiggins, C. (2019). The conspicuousness of the toxic Heliconius butterflies across time and habitat. https://doi.org/10.1101/662155 Dell'Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution; international journal of organic evolution, 72(10), 2156–2166. https://doi.org/10.1111/evo.13583 Dumbacher, J., Spande, T., & Daly, J. (2000). Batrachotoxin alkaloids from passerine birds: A second toxic bird genus ( <i>Ifrita kowaldi</i> ) from New Guinea. Proceedings Of The National Academy Of Sciences, 97(24), 12970-12975. https://doi.org/10.1073/pnas.200346897 Dumbacher, J., Deiner, K., Thompson, L., & Fleischer, R. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics And Evolution, 49(3), 774-781. https://doi.org/10.1016/j.ympev.2008.09.018 Finkbeiner, S., Briscoe, A., & Reed, R. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410-3420. https://doi.org/10.1111/evo.12524 Hart, N. (2002). Vision in the peafowl (Aves:Pavo cristatus). Journal Of Experimental Biology, 205(24), 3925-3935. https://doi.org/10.1242/jeb.205.24.3925 Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 186(4), 375–387. https://doi.org/10.1007/s003590050437 Holen, Ø. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings Of The Royal Society B: Biological Sciences, 280(1753), 20122588. https://doi.org/10.1098/rspb.2012.2588 Ihalainen, E., Lindström, L., & Mappes, J. (2006). Investigating Müllerian mimicry: predator learning and variation in prey defences. Journal Of Evolutionary Biology, 20(2), 780- 791. https://doi.org/10.1111/j.1420-9101.2006.01234.x Jiggins, C. D. (2017). The ecology and evolution of Heliconius butterflies. Oxford University Press. Kikuchi, D., Herberstein, M., Barfield, M., Holt, R., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96(6), 2446-2460. https://doi.org/10.1111/brv.12760 Klein, A., & de Araújo, A. (2013). Sexual Size Dimorphism in the Color Pattern Elements of Two Mimetic Heliconius Butterflies. Neotropical Entomology, 42(6), 600-606. https://doi.org/10.1007/s13744-013-0157-x Kronforst, M., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387 Lee, T., Speed, M., & Stephens, P. (2011). Honest Signaling and the Uses of Prey Coloration. The American Naturalist, 178(1), E1-E9. https://doi.org/10.1086/660197 Lewis, S., & Cratsley, C. (2008). Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annual Review Of Entomology, 53(1), 293-321. https://doi.org/10.1146/annurev.ento.53.103106.093346 Lindström, L., Lyytinen, A., Mappes, J., & Ojala, K. (2006). Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Animal Behaviour, 72(2), 323-333 Llaurens, V., Joron, M., & Théry, M. (2014). Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?. Journal Of Evolutionary Biology, 27(3), 531-540. https://doi.org/10.1111/jeb.12317 Maan, M., & Cummings, M. (2012). Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197 Mattila, A., Jiggins, C., Opedal, Ø., Montejo-Kovacevich, G., Pinheiro de castro, É., & McMillan, W. et al. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Peerj, 9, e11523. https://doi.org/10.7717/peerj.11523 Medina, I., Wallenius, T., & Head, M. (2019). No honesty in warning signals across life stages in an aposematic bug. Evolutionary Ecology, 34(1), 59-72. https://doi.org/10.1007/s10682- 019-10025-0 Mochida, K., Kitada, M., Ikeda, K., Toda, M., Takatani, T., & Arakawa, O. (2013). Spatial and Temporal Instability of Local Biotic Community Mediate a Form of Aposematic Defense in Newts, Consisting of Carotenoid-Based Coloration and Tetrodotoxin. Journal Of Chemical Ecology, 39(9), 1186-1192. https://doi.org/10.1007/s10886-013-0342-8 Müller, F. (1878). Über die vortheile der mimicry bei schmetterlingen Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532– 552. https://doi.org/10.1037/0033-295X.87.6.532 Pinheiro de Castro, É., Zagrobelny, M., Zurano, J., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology And Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062 Preißler, K., Gippner, S., Lüddecke, T., Krause, E., Schulz, S., Vences, M., & Steinfartz, S. (2019). More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of Zoology, 308(4), 293-300. https://doi.org/10.1111/jzo.12676 Rowe, C., & Skelhorn, J. (2005). Colour biases are a question of taste. Animal Behaviour, 69(3), 587-594. https://doi.org/10.1016/j.anbehav.2004.06.010 Santos, J., Coloma, L., & Cannatella, D. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings Of The National Academy Of Sciences, 100(22), 12792-12797 Sculfort, O., Castro, E., Kozak, K., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 10(5), 2677-2694. https://doi.org/10.1002/ece3.6044 Skelhorn, J. y Rowe, C. (2005). Saboreando la diferencia: ¿interactúan múltiples químicos de defensa en el mimetismo mülleriano?. Actas. Ciencias biológicas, 272 (1560), 339– 345. https://doi.org/10.1098/rspb.2004.2953 Speed, M., & Ruxton, G. (2007). How bright and how nasty: Explaining diversity in warning signal strength. Evolution, 61(3), 623-635. https://doi.org/10.1111/j.1558- 5646.2007.00054.x Speed, M., & Turner, J. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal Of The Linnean Society, 67(3), 281-312. https://doi.org/10.1111/j.1095-8312.1999.tb01935.x Stuckert, A., Saporito, R., & Summers, K. (2018). An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 52(2), 201-208. https://doi.org/10.1670/17-047 Summers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? A review. Journal Of Evolutionary Biology, 28(9), 1583-1599. https://doi.org/10.1111/jeb.12676 White, T., & Umbers, K. (2021). Meta-analytic evidence for quantitative honesty in aposematic signals. Proceedings Of The Royal Society B: Biological Sciences, 288(1949). https://doi.org/10.1098/rspb.2021.0679 Wilts, B., Vey, A., Briscoe, A., & Stavenga, D. (2017). Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-1073-1 Winters, A., Wilson, N., van den Berg, C., How, M., Endler, J., & Marshall, N. et al. (2018). Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings Of The Royal Society B: Biological Sciences, 285(1880), 20180457. https://doi.org/10.1098/rspb.2018.0457 |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/25ae1281-36bd-4a25-920d-78bc871cba7f/download https://repository.urosario.edu.co/bitstreams/acae48f9-8a4f-461e-9d1f-c31160ff0dda/download https://repository.urosario.edu.co/bitstreams/cbf59724-dccd-4758-a779-c979531f3b4c/download https://repository.urosario.edu.co/bitstreams/b830f9e7-9926-4762-84ad-269e3416c5ba/download https://repository.urosario.edu.co/bitstreams/48a6bdaf-f0c7-425f-a981-a6320b07aa23/download https://repository.urosario.edu.co/bitstreams/17d09afe-1d35-4681-8cef-a1f112dd4516/download https://repository.urosario.edu.co/bitstreams/0b4d7776-e5d4-4a3d-9d9b-00c584a8387d/download |
bitstream.checksum.fl_str_mv |
48323173874516c7caa1185804bf46fe bd67fbf5bd4ffa56f4f49fee6a0c517f fab9d9ed61d64f6ac005dee3306ae77e d52e1ed57d7be818886547fe379fbec4 f4481f68fce19bafaafcfe6ffb6df0f0 9efd8e11f8128b3074686935e3ee3ad6 15da844fe30224a035b3056d9c4d3edf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167516754214912 |
spelling |
Salazar, Camilo79873757600Rueda, Nicol91dbaeda-ce21-413e-b4f7-e6d07f25d3c5600Ramírez Romero, Juan PabloBiólogoPregradoFull timed51ee6a8-48f0-4300-9f9c-ab3cff5e52e06002022-08-25T20:14:28Z2022-08-25T20:14:28Z2022-08-08info:eu-repo/date/embargoEnd/2024-08-25Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay sobre la coloración y la toxicidad de este grupo de mariposas, la relación entre ambos caracteres aún no ha sido estudiada y se desconoce si la señal de advertencia es cuantitativamente honesta. En este estudio se cuantificaron los compuestos cianogénicos y los contrastes de color de dos anillos miméticos bajo condiciones de luz y dos modelos de visión de las aves. La relación entre estas dos variables se evaluó por medio de la implementación de modelos lineales (lm). No se encontró correlación entre la coloración y la toxicidad, pero si entre esta última y las especies. Adicionalmente, se encontró variación entre los perfiles químicos de especies de un mismo anillo, así como también entre localidades geográficas. La limitación del recurso, las relaciones filogenéticas y otros factores adicionales podrían contribuir a explicar la asociación de la toxicidad a un mismo patrón de coloración.Colour patterns in müllerian mimetic species are strongly related to the evolution of chemical defences. One of the classic examples of mimicry is the Heliconius butterflies, where there is a high geographic variation of mimetic rings. Despite extensive research on the colouration and toxicity of this group of butterflies, the relationship between these two traits is still understudied, and whether the warning signal is quantitatively honest is unknown. In this study, cyanogenic compounds and colour contrasts of two mimetic rings were quantified under different light conditions and two models of bird vision. The correlation between these two variables was evaluated using linear models (lm). No correlation was found between colouration and toxicity, but there was a correlation between the latter and the species. In addition, variation was found between the chemical profiles of species in the same ring and between geographic locations. Other factors such as resource limitation (e.g. host plant) could explain the toxicity associated with the same colouration pattern.2022-09-19 13:55:01: Script de automatizacion de embargos. Correo 22ago2022: Solicito amablemente se cambie el acceso del documento de trabajo de grado que cargue en el repositorio de la universidad, de forma que este NO quede con acceso público. Esto por solicitud de mis directores de grado. El documento fue cargado el día 20 de agosto y su titulo es: ¿Es la coloración aposemática de las mariposas Heliconius una señal honesta de su toxicidad? Respuesta De acuerdo con su solicitud, el documento ha quedado embargado por 2 años hasta el 25 de agosto de 2024 en concordancia con las Políticas de Acceso Abierto de la Universidad. Si usted desea dejarlo con acceso abierto antes de finalizar dicho periodo o si por el contrario desea extender el embargo al finalizar este tiempo, puede enviar un correo a esta misma dirección realizando la solicitud. Tenga en cuenta que los documentos en acceso abierto propician una mayor visibilidad de su producción académica.25 ppapplication/pdfhttps://doi.org/10.48713/10336_34795https://repository.urosario.edu.co/handle/10336/34795spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaRestringido (Temporalmente bloqueado)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_f1cfArias, M., Meichanetzoglou, A., Elias, M., Rosser, N., de-Silva, D., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evolutionary Biology, 16(1). https://doi.org/10.1186/s12862-016-0843-5Balogh, A., Gamberale-Stille, G., & Leimar, O. (2008). Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 76(5), 1591-1599. https://doi.org/10.1016/j.anbehav.2008.07.017Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. (2021). Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/. Bergvall, U., & Leimar, O. (2005). Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology, 86(9), 2450-2460. https://doi.org/10.1890/04-0978Blount, J., Speed, M., Ruxton, G., & Stephens, P. (2008). Warning displays may function as honest signals of toxicity. Proceedings Of The Royal Society B: Biological Sciences, 276(1658), 871-877. https://doi.org/10.1098/rspb.2008.1407Blount, J., Rowland, H., Mitchell, C., Speed, M., Ruxton, G., Endler, J., & Brower, L. (2021). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. https://doi.org/10.1101/2021.12.08.471400Briolat, E., Burdfield-Steel, E., Paul, S., Rönkä, K., Seymoure, B., Stankowich, T., & Stuckert, A. (2018). Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 94(2), 388-414. https://doi.org/10.1111/brv.12460Briolat, E., Zagrobelny, M., Olsen, C., Blount, J., & Stevens, M. (2018). Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.) *. Evolution, 72(7), 1460-1474. https://doi.org/10.1111/evo.13505Cortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal Of Evolutionary Biology, 23(7), 1509-1518. https://doi.org/10.1111/j.1420-9101.2010.02018.xCourville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends In Cognitive Sciences, 10(7), 294-300. https://doi.org/10.1016/j.tics.2006.05.004Darst, C., Cummings, M., & Cannatella, D. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings Of The National Academy Of Sciences, 103(15), 5852-5857. https://doi.org/10.1073/pnas.0600625103Dell’Aglio, D., Troscianko, J., Stevens, M., McMillan, W., & Jiggins, C. (2019). The conspicuousness of the toxic Heliconius butterflies across time and habitat. https://doi.org/10.1101/662155Dell'Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution; international journal of organic evolution, 72(10), 2156–2166. https://doi.org/10.1111/evo.13583Dumbacher, J., Spande, T., & Daly, J. (2000). Batrachotoxin alkaloids from passerine birds: A second toxic bird genus ( <i>Ifrita kowaldi</i> ) from New Guinea. Proceedings Of The National Academy Of Sciences, 97(24), 12970-12975. https://doi.org/10.1073/pnas.200346897Dumbacher, J., Deiner, K., Thompson, L., & Fleischer, R. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics And Evolution, 49(3), 774-781. https://doi.org/10.1016/j.ympev.2008.09.018Finkbeiner, S., Briscoe, A., & Reed, R. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410-3420. https://doi.org/10.1111/evo.12524Hart, N. (2002). Vision in the peafowl (Aves:Pavo cristatus). Journal Of Experimental Biology, 205(24), 3925-3935. https://doi.org/10.1242/jeb.205.24.3925Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 186(4), 375–387. https://doi.org/10.1007/s003590050437Holen, Ø. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings Of The Royal Society B: Biological Sciences, 280(1753), 20122588. https://doi.org/10.1098/rspb.2012.2588Ihalainen, E., Lindström, L., & Mappes, J. (2006). Investigating Müllerian mimicry: predator learning and variation in prey defences. Journal Of Evolutionary Biology, 20(2), 780- 791. https://doi.org/10.1111/j.1420-9101.2006.01234.xJiggins, C. D. (2017). The ecology and evolution of Heliconius butterflies. Oxford University Press.Kikuchi, D., Herberstein, M., Barfield, M., Holt, R., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96(6), 2446-2460. https://doi.org/10.1111/brv.12760Klein, A., & de Araújo, A. (2013). Sexual Size Dimorphism in the Color Pattern Elements of Two Mimetic Heliconius Butterflies. Neotropical Entomology, 42(6), 600-606. https://doi.org/10.1007/s13744-013-0157-xKronforst, M., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387Lee, T., Speed, M., & Stephens, P. (2011). Honest Signaling and the Uses of Prey Coloration. The American Naturalist, 178(1), E1-E9. https://doi.org/10.1086/660197Lewis, S., & Cratsley, C. (2008). Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annual Review Of Entomology, 53(1), 293-321. https://doi.org/10.1146/annurev.ento.53.103106.093346Lindström, L., Lyytinen, A., Mappes, J., & Ojala, K. (2006). Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Animal Behaviour, 72(2), 323-333Llaurens, V., Joron, M., & Théry, M. (2014). Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?. Journal Of Evolutionary Biology, 27(3), 531-540. https://doi.org/10.1111/jeb.12317Maan, M., & Cummings, M. (2012). Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197Mattila, A., Jiggins, C., Opedal, Ø., Montejo-Kovacevich, G., Pinheiro de castro, É., & McMillan, W. et al. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Peerj, 9, e11523. https://doi.org/10.7717/peerj.11523Medina, I., Wallenius, T., & Head, M. (2019). No honesty in warning signals across life stages in an aposematic bug. Evolutionary Ecology, 34(1), 59-72. https://doi.org/10.1007/s10682- 019-10025-0Mochida, K., Kitada, M., Ikeda, K., Toda, M., Takatani, T., & Arakawa, O. (2013). Spatial and Temporal Instability of Local Biotic Community Mediate a Form of Aposematic Defense in Newts, Consisting of Carotenoid-Based Coloration and Tetrodotoxin. Journal Of Chemical Ecology, 39(9), 1186-1192. https://doi.org/10.1007/s10886-013-0342-8Müller, F. (1878). Über die vortheile der mimicry bei schmetterlingenPearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532– 552. https://doi.org/10.1037/0033-295X.87.6.532Pinheiro de Castro, É., Zagrobelny, M., Zurano, J., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology And Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062Preißler, K., Gippner, S., Lüddecke, T., Krause, E., Schulz, S., Vences, M., & Steinfartz, S. (2019). More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of Zoology, 308(4), 293-300. https://doi.org/10.1111/jzo.12676Rowe, C., & Skelhorn, J. (2005). Colour biases are a question of taste. Animal Behaviour, 69(3), 587-594. https://doi.org/10.1016/j.anbehav.2004.06.010Santos, J., Coloma, L., & Cannatella, D. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings Of The National Academy Of Sciences, 100(22), 12792-12797Sculfort, O., Castro, E., Kozak, K., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 10(5), 2677-2694. https://doi.org/10.1002/ece3.6044Skelhorn, J. y Rowe, C. (2005). Saboreando la diferencia: ¿interactúan múltiples químicos de defensa en el mimetismo mülleriano?. Actas. Ciencias biológicas, 272 (1560), 339– 345. https://doi.org/10.1098/rspb.2004.2953Speed, M., & Ruxton, G. (2007). How bright and how nasty: Explaining diversity in warning signal strength. Evolution, 61(3), 623-635. https://doi.org/10.1111/j.1558- 5646.2007.00054.xSpeed, M., & Turner, J. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal Of The Linnean Society, 67(3), 281-312. https://doi.org/10.1111/j.1095-8312.1999.tb01935.xStuckert, A., Saporito, R., & Summers, K. (2018). An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 52(2), 201-208. https://doi.org/10.1670/17-047Summers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? A review. Journal Of Evolutionary Biology, 28(9), 1583-1599. https://doi.org/10.1111/jeb.12676White, T., & Umbers, K. (2021). Meta-analytic evidence for quantitative honesty in aposematic signals. Proceedings Of The Royal Society B: Biological Sciences, 288(1949). https://doi.org/10.1098/rspb.2021.0679Wilts, B., Vey, A., Briscoe, A., & Stavenga, D. (2017). Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-1073-1Winters, A., Wilson, N., van den Berg, C., How, M., Endler, J., & Marshall, N. et al. (2018). Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings Of The Royal Society B: Biological Sciences, 285(1880), 20180457. https://doi.org/10.1098/rspb.2018.0457instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMimetismo müllerianoMariposas heliconiusContraste cromático y acromáticoCompuestos cianogénicosAposemátismoBiología574600Müllerian mimicryHeliconius butterfliesChromatic and achromatic contrastCyanogenic compoundsAposematism¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?Is the aposematic coloration of heliconius butterflies an honest sign of their toxicity?bachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALRamirezRomero-JuanPablo-2022.pdfRamirezRomero-JuanPablo-2022.pdfTesis pregradoapplication/pdf1153483https://repository.urosario.edu.co/bitstreams/25ae1281-36bd-4a25-920d-78bc871cba7f/download48323173874516c7caa1185804bf46feMD51RamirezRomero-JuanPablo-1-2022.pdfRamirezRomero-JuanPablo-1-2022.pdfAnexosapplication/pdf3748446https://repository.urosario.edu.co/bitstreams/acae48f9-8a4f-461e-9d1f-c31160ff0dda/downloadbd67fbf5bd4ffa56f4f49fee6a0c517fMD52LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/cbf59724-dccd-4758-a779-c979531f3b4c/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53TEXTRamirezRomero-JuanPablo-2022.pdf.txtRamirezRomero-JuanPablo-2022.pdf.txtExtracted texttext/plain42213https://repository.urosario.edu.co/bitstreams/b830f9e7-9926-4762-84ad-269e3416c5ba/downloadd52e1ed57d7be818886547fe379fbec4MD54RamirezRomero-JuanPablo-1-2022.pdf.txtRamirezRomero-JuanPablo-1-2022.pdf.txtExtracted texttext/plain16924https://repository.urosario.edu.co/bitstreams/48a6bdaf-f0c7-425f-a981-a6320b07aa23/downloadf4481f68fce19bafaafcfe6ffb6df0f0MD56THUMBNAILRamirezRomero-JuanPablo-2022.pdf.jpgRamirezRomero-JuanPablo-2022.pdf.jpgGenerated Thumbnailimage/jpeg2404https://repository.urosario.edu.co/bitstreams/17d09afe-1d35-4681-8cef-a1f112dd4516/download9efd8e11f8128b3074686935e3ee3ad6MD55RamirezRomero-JuanPablo-1-2022.pdf.jpgRamirezRomero-JuanPablo-1-2022.pdf.jpgGenerated Thumbnailimage/jpeg3640https://repository.urosario.edu.co/bitstreams/0b4d7776-e5d4-4a3d-9d9b-00c584a8387d/download15da844fe30224a035b3056d9c4d3edfMD5710336/34795oai:repository.urosario.edu.co:10336/347952022-09-19 13:55:01.778353https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |