¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?

Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/34795
Acceso en línea:
https://doi.org/10.48713/10336_34795
https://repository.urosario.edu.co/handle/10336/34795
Palabra clave:
Mimetismo mülleriano
Mariposas heliconius
Contraste cromático y acromático
Compuestos cianogénicos
Aposemátismo
Biología
Müllerian mimicry
Heliconius butterflies
Chromatic and achromatic contrast
Cyanogenic compounds
Aposematism
Rights
License
Restringido (Temporalmente bloqueado)
id EDOCUR2_a159953cdd51bbf10509367fe835d1db
oai_identifier_str oai:repository.urosario.edu.co:10336/34795
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.es.fl_str_mv ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
dc.title.TranslatedTitle.es.fl_str_mv Is the aposematic coloration of heliconius butterflies an honest sign of their toxicity?
title ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
spellingShingle ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
Mimetismo mülleriano
Mariposas heliconius
Contraste cromático y acromático
Compuestos cianogénicos
Aposemátismo
Biología
Müllerian mimicry
Heliconius butterflies
Chromatic and achromatic contrast
Cyanogenic compounds
Aposematism
title_short ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
title_full ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
title_fullStr ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
title_full_unstemmed ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
title_sort ¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?
dc.contributor.advisor.none.fl_str_mv Salazar, Camilo
Rueda, Nicol
dc.subject.es.fl_str_mv Mimetismo mülleriano
Mariposas heliconius
Contraste cromático y acromático
Compuestos cianogénicos
Aposemátismo
topic Mimetismo mülleriano
Mariposas heliconius
Contraste cromático y acromático
Compuestos cianogénicos
Aposemátismo
Biología
Müllerian mimicry
Heliconius butterflies
Chromatic and achromatic contrast
Cyanogenic compounds
Aposematism
dc.subject.ddc.es.fl_str_mv Biología
dc.subject.keyword.es.fl_str_mv Müllerian mimicry
Heliconius butterflies
Chromatic and achromatic contrast
Cyanogenic compounds
Aposematism
description Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay sobre la coloración y la toxicidad de este grupo de mariposas, la relación entre ambos caracteres aún no ha sido estudiada y se desconoce si la señal de advertencia es cuantitativamente honesta. En este estudio se cuantificaron los compuestos cianogénicos y los contrastes de color de dos anillos miméticos bajo condiciones de luz y dos modelos de visión de las aves. La relación entre estas dos variables se evaluó por medio de la implementación de modelos lineales (lm). No se encontró correlación entre la coloración y la toxicidad, pero si entre esta última y las especies. Adicionalmente, se encontró variación entre los perfiles químicos de especies de un mismo anillo, así como también entre localidades geográficas. La limitación del recurso, las relaciones filogenéticas y otros factores adicionales podrían contribuir a explicar la asociación de la toxicidad a un mismo patrón de coloración.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T20:14:28Z
dc.date.available.none.fl_str_mv 2022-08-25T20:14:28Z
dc.date.created.none.fl_str_mv 2022-08-08
dc.date.embargoEnd.none.fl_str_mv info:eu-repo/date/embargoEnd/2024-08-25
dc.type.es.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.es.fl_str_mv Trabajo de grado
dc.type.spa.es.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_34795
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/34795
url https://doi.org/10.48713/10336_34795
https://repository.urosario.edu.co/handle/10336/34795
dc.language.iso.es.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.acceso.es.fl_str_mv Restringido (Temporalmente bloqueado)
rights_invalid_str_mv Restringido (Temporalmente bloqueado)
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.es.fl_str_mv 25 pp
dc.format.mimetype.es.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Facultad de Ciencias Naturales
dc.publisher.program.none.fl_str_mv Biología
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.es.fl_str_mv Arias, M., Meichanetzoglou, A., Elias, M., Rosser, N., de-Silva, D., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evolutionary Biology, 16(1). https://doi.org/10.1186/s12862-016-0843-5
Balogh, A., Gamberale-Stille, G., & Leimar, O. (2008). Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 76(5), 1591-1599. https://doi.org/10.1016/j.anbehav.2008.07.017
Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. (2021). Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/. Bergvall, U., & Leimar, O. (2005). Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology, 86(9), 2450-2460. https://doi.org/10.1890/04-0978
Blount, J., Speed, M., Ruxton, G., & Stephens, P. (2008). Warning displays may function as honest signals of toxicity. Proceedings Of The Royal Society B: Biological Sciences, 276(1658), 871-877. https://doi.org/10.1098/rspb.2008.1407
Blount, J., Rowland, H., Mitchell, C., Speed, M., Ruxton, G., Endler, J., & Brower, L. (2021). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. https://doi.org/10.1101/2021.12.08.471400
Briolat, E., Burdfield-Steel, E., Paul, S., Rönkä, K., Seymoure, B., Stankowich, T., & Stuckert, A. (2018). Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 94(2), 388-414. https://doi.org/10.1111/brv.12460
Briolat, E., Zagrobelny, M., Olsen, C., Blount, J., & Stevens, M. (2018). Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.) *. Evolution, 72(7), 1460-1474. https://doi.org/10.1111/evo.13505
Cortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal Of Evolutionary Biology, 23(7), 1509-1518. https://doi.org/10.1111/j.1420-9101.2010.02018.x
Courville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends In Cognitive Sciences, 10(7), 294-300. https://doi.org/10.1016/j.tics.2006.05.004
Darst, C., Cummings, M., & Cannatella, D. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings Of The National Academy Of Sciences, 103(15), 5852-5857. https://doi.org/10.1073/pnas.0600625103
Dell’Aglio, D., Troscianko, J., Stevens, M., McMillan, W., & Jiggins, C. (2019). The conspicuousness of the toxic Heliconius butterflies across time and habitat. https://doi.org/10.1101/662155
Dell'Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution; international journal of organic evolution, 72(10), 2156–2166. https://doi.org/10.1111/evo.13583
Dumbacher, J., Spande, T., & Daly, J. (2000). Batrachotoxin alkaloids from passerine birds: A second toxic bird genus ( <i>Ifrita kowaldi</i> ) from New Guinea. Proceedings Of The National Academy Of Sciences, 97(24), 12970-12975. https://doi.org/10.1073/pnas.200346897
Dumbacher, J., Deiner, K., Thompson, L., & Fleischer, R. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics And Evolution, 49(3), 774-781. https://doi.org/10.1016/j.ympev.2008.09.018
Finkbeiner, S., Briscoe, A., & Reed, R. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410-3420. https://doi.org/10.1111/evo.12524
Hart, N. (2002). Vision in the peafowl (Aves:Pavo cristatus). Journal Of Experimental Biology, 205(24), 3925-3935. https://doi.org/10.1242/jeb.205.24.3925
Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 186(4), 375–387. https://doi.org/10.1007/s003590050437
Holen, Ø. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings Of The Royal Society B: Biological Sciences, 280(1753), 20122588. https://doi.org/10.1098/rspb.2012.2588
Ihalainen, E., Lindström, L., & Mappes, J. (2006). Investigating Müllerian mimicry: predator learning and variation in prey defences. Journal Of Evolutionary Biology, 20(2), 780- 791. https://doi.org/10.1111/j.1420-9101.2006.01234.x
Jiggins, C. D. (2017). The ecology and evolution of Heliconius butterflies. Oxford University Press.
Kikuchi, D., Herberstein, M., Barfield, M., Holt, R., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96(6), 2446-2460. https://doi.org/10.1111/brv.12760
Klein, A., & de Araújo, A. (2013). Sexual Size Dimorphism in the Color Pattern Elements of Two Mimetic Heliconius Butterflies. Neotropical Entomology, 42(6), 600-606. https://doi.org/10.1007/s13744-013-0157-x
Kronforst, M., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387
Lee, T., Speed, M., & Stephens, P. (2011). Honest Signaling and the Uses of Prey Coloration. The American Naturalist, 178(1), E1-E9. https://doi.org/10.1086/660197
Lewis, S., & Cratsley, C. (2008). Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annual Review Of Entomology, 53(1), 293-321. https://doi.org/10.1146/annurev.ento.53.103106.093346
Lindström, L., Lyytinen, A., Mappes, J., & Ojala, K. (2006). Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Animal Behaviour, 72(2), 323-333
Llaurens, V., Joron, M., & Théry, M. (2014). Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?. Journal Of Evolutionary Biology, 27(3), 531-540. https://doi.org/10.1111/jeb.12317
Maan, M., & Cummings, M. (2012). Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197
Mattila, A., Jiggins, C., Opedal, Ø., Montejo-Kovacevich, G., Pinheiro de castro, É., & McMillan, W. et al. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Peerj, 9, e11523. https://doi.org/10.7717/peerj.11523
Medina, I., Wallenius, T., & Head, M. (2019). No honesty in warning signals across life stages in an aposematic bug. Evolutionary Ecology, 34(1), 59-72. https://doi.org/10.1007/s10682- 019-10025-0
Mochida, K., Kitada, M., Ikeda, K., Toda, M., Takatani, T., & Arakawa, O. (2013). Spatial and Temporal Instability of Local Biotic Community Mediate a Form of Aposematic Defense in Newts, Consisting of Carotenoid-Based Coloration and Tetrodotoxin. Journal Of Chemical Ecology, 39(9), 1186-1192. https://doi.org/10.1007/s10886-013-0342-8
Müller, F. (1878). Über die vortheile der mimicry bei schmetterlingen
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532– 552. https://doi.org/10.1037/0033-295X.87.6.532
Pinheiro de Castro, É., Zagrobelny, M., Zurano, J., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology And Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062
Preißler, K., Gippner, S., Lüddecke, T., Krause, E., Schulz, S., Vences, M., & Steinfartz, S. (2019). More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of Zoology, 308(4), 293-300. https://doi.org/10.1111/jzo.12676
Rowe, C., & Skelhorn, J. (2005). Colour biases are a question of taste. Animal Behaviour, 69(3), 587-594. https://doi.org/10.1016/j.anbehav.2004.06.010
Santos, J., Coloma, L., & Cannatella, D. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings Of The National Academy Of Sciences, 100(22), 12792-12797
Sculfort, O., Castro, E., Kozak, K., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 10(5), 2677-2694. https://doi.org/10.1002/ece3.6044
Skelhorn, J. y Rowe, C. (2005). Saboreando la diferencia: ¿interactúan múltiples químicos de defensa en el mimetismo mülleriano?. Actas. Ciencias biológicas, 272 (1560), 339– 345. https://doi.org/10.1098/rspb.2004.2953
Speed, M., & Ruxton, G. (2007). How bright and how nasty: Explaining diversity in warning signal strength. Evolution, 61(3), 623-635. https://doi.org/10.1111/j.1558- 5646.2007.00054.x
Speed, M., & Turner, J. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal Of The Linnean Society, 67(3), 281-312. https://doi.org/10.1111/j.1095-8312.1999.tb01935.x
Stuckert, A., Saporito, R., & Summers, K. (2018). An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 52(2), 201-208. https://doi.org/10.1670/17-047
Summers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? A review. Journal Of Evolutionary Biology, 28(9), 1583-1599. https://doi.org/10.1111/jeb.12676
White, T., & Umbers, K. (2021). Meta-analytic evidence for quantitative honesty in aposematic signals. Proceedings Of The Royal Society B: Biological Sciences, 288(1949). https://doi.org/10.1098/rspb.2021.0679
Wilts, B., Vey, A., Briscoe, A., & Stavenga, D. (2017). Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-1073-1
Winters, A., Wilson, N., van den Berg, C., How, M., Endler, J., & Marshall, N. et al. (2018). Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings Of The Royal Society B: Biological Sciences, 285(1880), 20180457. https://doi.org/10.1098/rspb.2018.0457
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/25ae1281-36bd-4a25-920d-78bc871cba7f/download
https://repository.urosario.edu.co/bitstreams/acae48f9-8a4f-461e-9d1f-c31160ff0dda/download
https://repository.urosario.edu.co/bitstreams/cbf59724-dccd-4758-a779-c979531f3b4c/download
https://repository.urosario.edu.co/bitstreams/b830f9e7-9926-4762-84ad-269e3416c5ba/download
https://repository.urosario.edu.co/bitstreams/48a6bdaf-f0c7-425f-a981-a6320b07aa23/download
https://repository.urosario.edu.co/bitstreams/17d09afe-1d35-4681-8cef-a1f112dd4516/download
https://repository.urosario.edu.co/bitstreams/0b4d7776-e5d4-4a3d-9d9b-00c584a8387d/download
bitstream.checksum.fl_str_mv 48323173874516c7caa1185804bf46fe
bd67fbf5bd4ffa56f4f49fee6a0c517f
fab9d9ed61d64f6ac005dee3306ae77e
d52e1ed57d7be818886547fe379fbec4
f4481f68fce19bafaafcfe6ffb6df0f0
9efd8e11f8128b3074686935e3ee3ad6
15da844fe30224a035b3056d9c4d3edf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167516754214912
spelling Salazar, Camilo79873757600Rueda, Nicol91dbaeda-ce21-413e-b4f7-e6d07f25d3c5600Ramírez Romero, Juan PabloBiólogoPregradoFull timed51ee6a8-48f0-4300-9f9c-ab3cff5e52e06002022-08-25T20:14:28Z2022-08-25T20:14:28Z2022-08-08info:eu-repo/date/embargoEnd/2024-08-25Los patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay sobre la coloración y la toxicidad de este grupo de mariposas, la relación entre ambos caracteres aún no ha sido estudiada y se desconoce si la señal de advertencia es cuantitativamente honesta. En este estudio se cuantificaron los compuestos cianogénicos y los contrastes de color de dos anillos miméticos bajo condiciones de luz y dos modelos de visión de las aves. La relación entre estas dos variables se evaluó por medio de la implementación de modelos lineales (lm). No se encontró correlación entre la coloración y la toxicidad, pero si entre esta última y las especies. Adicionalmente, se encontró variación entre los perfiles químicos de especies de un mismo anillo, así como también entre localidades geográficas. La limitación del recurso, las relaciones filogenéticas y otros factores adicionales podrían contribuir a explicar la asociación de la toxicidad a un mismo patrón de coloración.Colour patterns in müllerian mimetic species are strongly related to the evolution of chemical defences. One of the classic examples of mimicry is the Heliconius butterflies, where there is a high geographic variation of mimetic rings. Despite extensive research on the colouration and toxicity of this group of butterflies, the relationship between these two traits is still understudied, and whether the warning signal is quantitatively honest is unknown. In this study, cyanogenic compounds and colour contrasts of two mimetic rings were quantified under different light conditions and two models of bird vision. The correlation between these two variables was evaluated using linear models (lm). No correlation was found between colouration and toxicity, but there was a correlation between the latter and the species. In addition, variation was found between the chemical profiles of species in the same ring and between geographic locations. Other factors such as resource limitation (e.g. host plant) could explain the toxicity associated with the same colouration pattern.2022-09-19 13:55:01: Script de automatizacion de embargos. Correo 22ago2022: Solicito amablemente se cambie el acceso del documento de trabajo de grado que cargue en el repositorio de la universidad, de forma que este NO quede con acceso público. Esto por solicitud de mis directores de grado. El documento fue cargado el día 20 de agosto y su titulo es: ¿Es la coloración aposemática de las mariposas Heliconius una señal honesta de su toxicidad? Respuesta De acuerdo con su solicitud, el documento ha quedado embargado por 2 años hasta el 25 de agosto de 2024 en concordancia con las Políticas de Acceso Abierto de la Universidad. Si usted desea dejarlo con acceso abierto antes de finalizar dicho periodo o si por el contrario desea extender el embargo al finalizar este tiempo, puede enviar un correo a esta misma dirección realizando la solicitud. Tenga en cuenta que los documentos en acceso abierto propician una mayor visibilidad de su producción académica.25 ppapplication/pdfhttps://doi.org/10.48713/10336_34795https://repository.urosario.edu.co/handle/10336/34795spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaRestringido (Temporalmente bloqueado)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_f1cfArias, M., Meichanetzoglou, A., Elias, M., Rosser, N., de-Silva, D., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evolutionary Biology, 16(1). https://doi.org/10.1186/s12862-016-0843-5Balogh, A., Gamberale-Stille, G., & Leimar, O. (2008). Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 76(5), 1591-1599. https://doi.org/10.1016/j.anbehav.2008.07.017Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. (2021). Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/. Bergvall, U., & Leimar, O. (2005). Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology, 86(9), 2450-2460. https://doi.org/10.1890/04-0978Blount, J., Speed, M., Ruxton, G., & Stephens, P. (2008). Warning displays may function as honest signals of toxicity. Proceedings Of The Royal Society B: Biological Sciences, 276(1658), 871-877. https://doi.org/10.1098/rspb.2008.1407Blount, J., Rowland, H., Mitchell, C., Speed, M., Ruxton, G., Endler, J., & Brower, L. (2021). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. https://doi.org/10.1101/2021.12.08.471400Briolat, E., Burdfield-Steel, E., Paul, S., Rönkä, K., Seymoure, B., Stankowich, T., & Stuckert, A. (2018). Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 94(2), 388-414. https://doi.org/10.1111/brv.12460Briolat, E., Zagrobelny, M., Olsen, C., Blount, J., & Stevens, M. (2018). Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.) *. Evolution, 72(7), 1460-1474. https://doi.org/10.1111/evo.13505Cortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal Of Evolutionary Biology, 23(7), 1509-1518. https://doi.org/10.1111/j.1420-9101.2010.02018.xCourville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends In Cognitive Sciences, 10(7), 294-300. https://doi.org/10.1016/j.tics.2006.05.004Darst, C., Cummings, M., & Cannatella, D. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings Of The National Academy Of Sciences, 103(15), 5852-5857. https://doi.org/10.1073/pnas.0600625103Dell’Aglio, D., Troscianko, J., Stevens, M., McMillan, W., & Jiggins, C. (2019). The conspicuousness of the toxic Heliconius butterflies across time and habitat. https://doi.org/10.1101/662155Dell'Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution; international journal of organic evolution, 72(10), 2156–2166. https://doi.org/10.1111/evo.13583Dumbacher, J., Spande, T., & Daly, J. (2000). Batrachotoxin alkaloids from passerine birds: A second toxic bird genus ( <i>Ifrita kowaldi</i> ) from New Guinea. Proceedings Of The National Academy Of Sciences, 97(24), 12970-12975. https://doi.org/10.1073/pnas.200346897Dumbacher, J., Deiner, K., Thompson, L., & Fleischer, R. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics And Evolution, 49(3), 774-781. https://doi.org/10.1016/j.ympev.2008.09.018Finkbeiner, S., Briscoe, A., & Reed, R. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410-3420. https://doi.org/10.1111/evo.12524Hart, N. (2002). Vision in the peafowl (Aves:Pavo cristatus). Journal Of Experimental Biology, 205(24), 3925-3935. https://doi.org/10.1242/jeb.205.24.3925Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 186(4), 375–387. https://doi.org/10.1007/s003590050437Holen, Ø. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings Of The Royal Society B: Biological Sciences, 280(1753), 20122588. https://doi.org/10.1098/rspb.2012.2588Ihalainen, E., Lindström, L., & Mappes, J. (2006). Investigating Müllerian mimicry: predator learning and variation in prey defences. Journal Of Evolutionary Biology, 20(2), 780- 791. https://doi.org/10.1111/j.1420-9101.2006.01234.xJiggins, C. D. (2017). The ecology and evolution of Heliconius butterflies. Oxford University Press.Kikuchi, D., Herberstein, M., Barfield, M., Holt, R., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96(6), 2446-2460. https://doi.org/10.1111/brv.12760Klein, A., & de Araújo, A. (2013). Sexual Size Dimorphism in the Color Pattern Elements of Two Mimetic Heliconius Butterflies. Neotropical Entomology, 42(6), 600-606. https://doi.org/10.1007/s13744-013-0157-xKronforst, M., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387Lee, T., Speed, M., & Stephens, P. (2011). Honest Signaling and the Uses of Prey Coloration. The American Naturalist, 178(1), E1-E9. https://doi.org/10.1086/660197Lewis, S., & Cratsley, C. (2008). Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annual Review Of Entomology, 53(1), 293-321. https://doi.org/10.1146/annurev.ento.53.103106.093346Lindström, L., Lyytinen, A., Mappes, J., & Ojala, K. (2006). Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Animal Behaviour, 72(2), 323-333Llaurens, V., Joron, M., & Théry, M. (2014). Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?. Journal Of Evolutionary Biology, 27(3), 531-540. https://doi.org/10.1111/jeb.12317Maan, M., & Cummings, M. (2012). Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197Mattila, A., Jiggins, C., Opedal, Ø., Montejo-Kovacevich, G., Pinheiro de castro, É., & McMillan, W. et al. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Peerj, 9, e11523. https://doi.org/10.7717/peerj.11523Medina, I., Wallenius, T., & Head, M. (2019). No honesty in warning signals across life stages in an aposematic bug. Evolutionary Ecology, 34(1), 59-72. https://doi.org/10.1007/s10682- 019-10025-0Mochida, K., Kitada, M., Ikeda, K., Toda, M., Takatani, T., & Arakawa, O. (2013). Spatial and Temporal Instability of Local Biotic Community Mediate a Form of Aposematic Defense in Newts, Consisting of Carotenoid-Based Coloration and Tetrodotoxin. Journal Of Chemical Ecology, 39(9), 1186-1192. https://doi.org/10.1007/s10886-013-0342-8Müller, F. (1878). Über die vortheile der mimicry bei schmetterlingenPearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532– 552. https://doi.org/10.1037/0033-295X.87.6.532Pinheiro de Castro, É., Zagrobelny, M., Zurano, J., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology And Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062Preißler, K., Gippner, S., Lüddecke, T., Krause, E., Schulz, S., Vences, M., & Steinfartz, S. (2019). More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of Zoology, 308(4), 293-300. https://doi.org/10.1111/jzo.12676Rowe, C., & Skelhorn, J. (2005). Colour biases are a question of taste. Animal Behaviour, 69(3), 587-594. https://doi.org/10.1016/j.anbehav.2004.06.010Santos, J., Coloma, L., & Cannatella, D. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings Of The National Academy Of Sciences, 100(22), 12792-12797Sculfort, O., Castro, E., Kozak, K., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 10(5), 2677-2694. https://doi.org/10.1002/ece3.6044Skelhorn, J. y Rowe, C. (2005). Saboreando la diferencia: ¿interactúan múltiples químicos de defensa en el mimetismo mülleriano?. Actas. Ciencias biológicas, 272 (1560), 339– 345. https://doi.org/10.1098/rspb.2004.2953Speed, M., & Ruxton, G. (2007). How bright and how nasty: Explaining diversity in warning signal strength. Evolution, 61(3), 623-635. https://doi.org/10.1111/j.1558- 5646.2007.00054.xSpeed, M., & Turner, J. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal Of The Linnean Society, 67(3), 281-312. https://doi.org/10.1111/j.1095-8312.1999.tb01935.xStuckert, A., Saporito, R., & Summers, K. (2018). An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 52(2), 201-208. https://doi.org/10.1670/17-047Summers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? A review. Journal Of Evolutionary Biology, 28(9), 1583-1599. https://doi.org/10.1111/jeb.12676White, T., & Umbers, K. (2021). Meta-analytic evidence for quantitative honesty in aposematic signals. Proceedings Of The Royal Society B: Biological Sciences, 288(1949). https://doi.org/10.1098/rspb.2021.0679Wilts, B., Vey, A., Briscoe, A., & Stavenga, D. (2017). Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-1073-1Winters, A., Wilson, N., van den Berg, C., How, M., Endler, J., & Marshall, N. et al. (2018). Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings Of The Royal Society B: Biological Sciences, 285(1880), 20180457. https://doi.org/10.1098/rspb.2018.0457instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMimetismo müllerianoMariposas heliconiusContraste cromático y acromáticoCompuestos cianogénicosAposemátismoBiología574600Müllerian mimicryHeliconius butterfliesChromatic and achromatic contrastCyanogenic compoundsAposematism¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?Is the aposematic coloration of heliconius butterflies an honest sign of their toxicity?bachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALRamirezRomero-JuanPablo-2022.pdfRamirezRomero-JuanPablo-2022.pdfTesis pregradoapplication/pdf1153483https://repository.urosario.edu.co/bitstreams/25ae1281-36bd-4a25-920d-78bc871cba7f/download48323173874516c7caa1185804bf46feMD51RamirezRomero-JuanPablo-1-2022.pdfRamirezRomero-JuanPablo-1-2022.pdfAnexosapplication/pdf3748446https://repository.urosario.edu.co/bitstreams/acae48f9-8a4f-461e-9d1f-c31160ff0dda/downloadbd67fbf5bd4ffa56f4f49fee6a0c517fMD52LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/cbf59724-dccd-4758-a779-c979531f3b4c/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53TEXTRamirezRomero-JuanPablo-2022.pdf.txtRamirezRomero-JuanPablo-2022.pdf.txtExtracted texttext/plain42213https://repository.urosario.edu.co/bitstreams/b830f9e7-9926-4762-84ad-269e3416c5ba/downloadd52e1ed57d7be818886547fe379fbec4MD54RamirezRomero-JuanPablo-1-2022.pdf.txtRamirezRomero-JuanPablo-1-2022.pdf.txtExtracted texttext/plain16924https://repository.urosario.edu.co/bitstreams/48a6bdaf-f0c7-425f-a981-a6320b07aa23/downloadf4481f68fce19bafaafcfe6ffb6df0f0MD56THUMBNAILRamirezRomero-JuanPablo-2022.pdf.jpgRamirezRomero-JuanPablo-2022.pdf.jpgGenerated Thumbnailimage/jpeg2404https://repository.urosario.edu.co/bitstreams/17d09afe-1d35-4681-8cef-a1f112dd4516/download9efd8e11f8128b3074686935e3ee3ad6MD55RamirezRomero-JuanPablo-1-2022.pdf.jpgRamirezRomero-JuanPablo-1-2022.pdf.jpgGenerated Thumbnailimage/jpeg3640https://repository.urosario.edu.co/bitstreams/0b4d7776-e5d4-4a3d-9d9b-00c584a8387d/download15da844fe30224a035b3056d9c4d3edfMD5710336/34795oai:repository.urosario.edu.co:10336/347952022-09-19 13:55:01.778353https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=