DICE: Quality-driven development of data-intensive cloud applications
Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28891
- Acceso en línea:
- https://doi.org/10.1109/MiSE.2015.21
https://repository.urosario.edu.co/handle/10336/28891
- Palabra clave:
- Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_9ffc13a3a7b287a0c91127a906f239c9 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28891 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
693f31c7-5e59-4d88-b96a-2175836ec1b086a05639-9b30-472d-8e81-e68a3f410eef43897092-7eb8-463a-a360-fd7de680fc4bb68437fd-ba42-4a24-b4b4-054698f38e4bc4ca34d4-7de1-4f5a-9932-536f1026eb1cd4145799-c0f6-4644-ab47-fd8156e85e59800352026002020-08-28T15:50:01Z2020-08-28T15:50:01Z2015-07-27Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.application/pdfhttps://doi.org/10.1109/MiSE.2015.21EISBN: 978-1-4673-7055-4https://repository.urosario.edu.co/handle/10336/28891engIEEE38782015 IEEE/ACM 7th International Workshop on Modeling in Software EngineeringIEEE/ACM 7th International Workshop on Modeling in Software Engineering, EISBN: 978-1-4673-7055-4 (2015); pp. 78-38https://ieeexplore.ieee.org/abstract/document/7167407/footnotes#footnotesRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURUnified modeling languageBig dataData modelsComputational modelingAnalytical modelsReliabilitySoftwareDICE: Quality-driven development of data-intensive cloud applicationsDICE: desarrollo impulsado por la calidad de aplicaciones en la nube con uso intensivo de datosbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Casale, GiulianoArdagna, DaniloArtac, MatejBarbier, FranckDi Nitto, ElisabettaHenry, AlexisPérez, Juan F.10336/28891oai:repository.urosario.edu.co:10336/288912021-09-23 12:35:41.259https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
DICE: Quality-driven development of data-intensive cloud applications |
dc.title.TranslatedTitle.spa.fl_str_mv |
DICE: desarrollo impulsado por la calidad de aplicaciones en la nube con uso intensivo de datos |
title |
DICE: Quality-driven development of data-intensive cloud applications |
spellingShingle |
DICE: Quality-driven development of data-intensive cloud applications Unified modeling language Big data Data models Computational modeling Analytical models Reliability Software |
title_short |
DICE: Quality-driven development of data-intensive cloud applications |
title_full |
DICE: Quality-driven development of data-intensive cloud applications |
title_fullStr |
DICE: Quality-driven development of data-intensive cloud applications |
title_full_unstemmed |
DICE: Quality-driven development of data-intensive cloud applications |
title_sort |
DICE: Quality-driven development of data-intensive cloud applications |
dc.subject.keyword.spa.fl_str_mv |
Unified modeling language Big data Data models Computational modeling Analytical models Reliability Software |
topic |
Unified modeling language Big data Data models Computational modeling Analytical models Reliability Software |
description |
Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015-07-27 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:50:01Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:50:01Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/MiSE.2015.21 |
dc.identifier.issn.none.fl_str_mv |
EISBN: 978-1-4673-7055-4 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28891 |
url |
https://doi.org/10.1109/MiSE.2015.21 https://repository.urosario.edu.co/handle/10336/28891 |
identifier_str_mv |
EISBN: 978-1-4673-7055-4 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
38 |
dc.relation.citationStartPage.none.fl_str_mv |
78 |
dc.relation.citationTitle.none.fl_str_mv |
2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering |
dc.relation.ispartof.spa.fl_str_mv |
IEEE/ACM 7th International Workshop on Modeling in Software Engineering, EISBN: 978-1-4673-7055-4 (2015); pp. 78-38 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/abstract/document/7167407/footnotes#footnotes |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106889266790400 |