DICE: Quality-driven development of data-intensive cloud applications

Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28891
Acceso en línea:
https://doi.org/10.1109/MiSE.2015.21
https://repository.urosario.edu.co/handle/10336/28891
Palabra clave:
Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_9ffc13a3a7b287a0c91127a906f239c9
oai_identifier_str oai:repository.urosario.edu.co:10336/28891
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 693f31c7-5e59-4d88-b96a-2175836ec1b086a05639-9b30-472d-8e81-e68a3f410eef43897092-7eb8-463a-a360-fd7de680fc4bb68437fd-ba42-4a24-b4b4-054698f38e4bc4ca34d4-7de1-4f5a-9932-536f1026eb1cd4145799-c0f6-4644-ab47-fd8156e85e59800352026002020-08-28T15:50:01Z2020-08-28T15:50:01Z2015-07-27Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.application/pdfhttps://doi.org/10.1109/MiSE.2015.21EISBN: 978-1-4673-7055-4https://repository.urosario.edu.co/handle/10336/28891engIEEE38782015 IEEE/ACM 7th International Workshop on Modeling in Software EngineeringIEEE/ACM 7th International Workshop on Modeling in Software Engineering, EISBN: 978-1-4673-7055-4 (2015); pp. 78-38https://ieeexplore.ieee.org/abstract/document/7167407/footnotes#footnotesRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURUnified modeling languageBig dataData modelsComputational modelingAnalytical modelsReliabilitySoftwareDICE: Quality-driven development of data-intensive cloud applicationsDICE: desarrollo impulsado por la calidad de aplicaciones en la nube con uso intensivo de datosbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Casale, GiulianoArdagna, DaniloArtac, MatejBarbier, FranckDi Nitto, ElisabettaHenry, AlexisPérez, Juan F.10336/28891oai:repository.urosario.edu.co:10336/288912021-09-23 12:35:41.259https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv DICE: Quality-driven development of data-intensive cloud applications
dc.title.TranslatedTitle.spa.fl_str_mv DICE: desarrollo impulsado por la calidad de aplicaciones en la nube con uso intensivo de datos
title DICE: Quality-driven development of data-intensive cloud applications
spellingShingle DICE: Quality-driven development of data-intensive cloud applications
Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
title_short DICE: Quality-driven development of data-intensive cloud applications
title_full DICE: Quality-driven development of data-intensive cloud applications
title_fullStr DICE: Quality-driven development of data-intensive cloud applications
title_full_unstemmed DICE: Quality-driven development of data-intensive cloud applications
title_sort DICE: Quality-driven development of data-intensive cloud applications
dc.subject.keyword.spa.fl_str_mv Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
topic Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
description Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015-07-27
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:50:01Z
dc.date.available.none.fl_str_mv 2020-08-28T15:50:01Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/MiSE.2015.21
dc.identifier.issn.none.fl_str_mv EISBN: 978-1-4673-7055-4
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28891
url https://doi.org/10.1109/MiSE.2015.21
https://repository.urosario.edu.co/handle/10336/28891
identifier_str_mv EISBN: 978-1-4673-7055-4
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 38
dc.relation.citationStartPage.none.fl_str_mv 78
dc.relation.citationTitle.none.fl_str_mv 2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering
dc.relation.ispartof.spa.fl_str_mv IEEE/ACM 7th International Workshop on Modeling in Software Engineering, EISBN: 978-1-4673-7055-4 (2015); pp. 78-38
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/abstract/document/7167407/footnotes#footnotes
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106889266790400