DICE: Quality-driven development of data-intensive cloud applications

Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28891
Acceso en línea:
https://doi.org/10.1109/MiSE.2015.21
https://repository.urosario.edu.co/handle/10336/28891
Palabra clave:
Unified modeling language
Big data
Data models
Computational modeling
Analytical models
Reliability
Software
Rights
License
Restringido (Acceso a grupos específicos)
Description
Summary:Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.