Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia
Las propiedades que sólo exhiben los materiales con dimensiones manométricas son el fundamento para el desarrollo o mejoría de diferentes aplicaciones biomédicas, como la radioterapia. Los nanomateriales ofrecen la posibilidad de hacer más eficiente esta forma de tratamiento, incrementando la radios...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/30705
- Acceso en línea:
- https://doi.org/10.48713/10336_30705
https://repository.urosario.edu.co/handle/10336/30705
- Palabra clave:
- Fototerapia
Radioterapia
Revisión de literatura
Aplicación medica de Nanomateriales
Nanotecnología en la medicina
Puntos de Carbono en terapia de radiación
Medicina experimental
Phototherapy
Radiotherapy
Literature Review
Nanomaterials medical application
Nanotechnology in medicine
Carbon points in radiation therapy
- Rights
- License
- Atribución-SinDerivadas 2.5 Colombia
id |
EDOCUR2_9f42dc0c06dc35638a79c14661e62c7c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/30705 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
dc.title.TranslatedTitle.eng.fl_str_mv |
Initial phase of a systematic literature review on the use of carbon dots in radiotherapy |
title |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
spellingShingle |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia Fototerapia Radioterapia Revisión de literatura Aplicación medica de Nanomateriales Nanotecnología en la medicina Puntos de Carbono en terapia de radiación Medicina experimental Phototherapy Radiotherapy Literature Review Nanomaterials medical application Nanotechnology in medicine Carbon points in radiation therapy |
title_short |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
title_full |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
title_fullStr |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
title_full_unstemmed |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
title_sort |
Fase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapia |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Burbano, Diana Consuelo Ondo Méndez, Alejandro Oyono |
dc.subject.spa.fl_str_mv |
Fototerapia Radioterapia Revisión de literatura Aplicación medica de Nanomateriales Nanotecnología en la medicina Puntos de Carbono en terapia de radiación |
topic |
Fototerapia Radioterapia Revisión de literatura Aplicación medica de Nanomateriales Nanotecnología en la medicina Puntos de Carbono en terapia de radiación Medicina experimental Phototherapy Radiotherapy Literature Review Nanomaterials medical application Nanotechnology in medicine Carbon points in radiation therapy |
dc.subject.ddc.spa.fl_str_mv |
Medicina experimental |
dc.subject.keyword.spa.fl_str_mv |
Phototherapy Radiotherapy Literature Review Nanomaterials medical application Nanotechnology in medicine Carbon points in radiation therapy |
description |
Las propiedades que sólo exhiben los materiales con dimensiones manométricas son el fundamento para el desarrollo o mejoría de diferentes aplicaciones biomédicas, como la radioterapia. Los nanomateriales ofrecen la posibilidad de hacer más eficiente esta forma de tratamiento, incrementando la radiosensibilización. Los puntos de carbono son nanopartículas que poseen propiedades físicas, ópticas y químicas que las hacen atractivas para ser implementadas en radioterapia. Sin embargo, al ser un nanomaterial recientemente descubierto, existen muchos campos de la investigación biomédica, como la radioterapia, en los que su potencial uso debe ser estudiado. Este documento de práctica de investigación consta de la realización de la fase inicial de una revisión sistemática de literatura sobre el uso de estas nanopartículas basadas en carbono en radioterapia. Se describe la metodología seguida para identificar la bibliografía más relevante relacionada con el tema, se clasifican de acuerdo a las características principales de la síntesis del nanomaterial y se describe la tendencia actual de las publicaciones relacionadas con el tema objetivo. Es importante mencionar que, al ser la fase inicial de un proyecto de investigación, no se ha terminado y aún se sigue trabajando en éste. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-11T22:22:24Z |
dc.date.available.none.fl_str_mv |
2020-12-11T22:22:24Z |
dc.date.created.none.fl_str_mv |
2020-12-07 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Revisión de la literatura |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_30705 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/30705 |
url |
https://doi.org/10.48713/10336_30705 https://repository.urosario.edu.co/handle/10336/30705 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Atribución-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
P. Zhang, A. Darmon, N. Mohamed and S. Paris, "Radiotherapy-Activated Hafnium OxideNanoparticles Produce Abscopal Effect in a MouseColorectal Cancer Model", International Journal of Nanomedicine, vol. 15, pp. 3843-3850, 2020 R. Baskar, K. Lee, R. Yeo and K. Yeoh, "Cancer and Radiation Therapy: Current Advances and Future Directions", International Journal of Medical Sciences, vol. 9, no. 3, pp. 193-199, 2012 K. Haume et al., "Gold nanoparticles for cancer radiotherapy: a review", Cancer Nanotechnology, vol. 7, no. 1, 2016. Radiotherapy Risk Profile. World Health Organization, 2008. D. Kwatra, A. Venugopa and S. Anant, "Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer", Translational Cancer Research, vol. 2, no. 4, 2013. B. Zhivotovsky, B. Joseph and S. Orrenius, "Tumor Radiosensitivity and Apoptosis", Experimental Cell Research, vol. 248, no. 1, pp. 10-17, 1999. W. Garcia, "Radiosensibilidad y factores genéticos de riesgo en el cáncer de tiroides", Doctorado, Universidad Autónoma de Barcelona, 2012. K. Cepeda Forero et al., "Radioresistencia en glioblastoma: papel de la hipoxia en la genotoxicidad inducida por radiaciones ionizantes", Ciencia e Investigación Medico Estudiantil Latinoamericana, vol. 23, no. 1, 2018. J. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, p. 1802244, 2018 S. Lim, W. Shen and Z. Gao, "Carbon quantum dots and their applications", Chemical Society Reviews, vol. 44, no. 1, pp. 362-381, 2015. N. Kumar and S. Kumbhat, Essentials in nanoscience and nanotechnology. New Jersey, Canada: John Wiley & Sons, Inc., 2016. M. Molaei, "Carbon quantum dots and their biomedical and therapeutic applications: a review", RSC Advances, vol. 9, no. 12, pp. 6460-6481, 2019. M. Tuerhong, Y. XU and X. YIN, "Review on Carbon Dots and Their Applications", Chinese Journal of Analytical Chemistry, vol. 45, no. 1, pp. 139-150, 2017. M. Abeloff, J. Niederhuber, J. Armitage and J. Tepper, Abeloff's Clinical oncology, 5 ed. Saunders, 2014, pp. 393-422. M. Granados García, A. Martín and J. Hinojosa Gómez, Tratamiento del cáncer. Distrito Federal: Editorial El Manual Moderno, 2016. M. Beyzadeoglu, G. Ozyigit and C. Ebruli, Basic Radiation Oncology, 1 ed. Springer-Verlag Berlin Heidelberg, 2010. Horst Frank, Jailbird, Espectro electromagnético. 2016. W. Potzel et al., "Interference Effects of Radiation Emitted from Nuclear Excitons", Hyperfine Interactions, vol. 151, pp. 263-281, 2003. S. Bushong, Manual de radiología para técnicos, 11 ed. Barcelona: Elsevier, 2018, pp. 146-162. M. Joiner and A. Kogel, Basic clinical radiobiology, 4 ed. Boca Raton: CRC Press/Taylor & Francis Group, 2009. J. Verdú Rotellar, M. Algara López, P. Foro Arnalot, M. Domínguez Tarragona and A. Blanch Mon, "Atención a los efectos secundarios de la radioterapia", Medifam, vol. 12, no. 7, pp. 426-435, 2002. P. Devi, S. Saini and K. Kim, "The advanced role of carbon quantum dots in nanomedical applications", Biosensors and Bioelectronics, vol. 141, pp. 1-17, 2019. K. Ghosal and A. Ghosh, "Carbon dots: The next generation platform for biomedical applications", Materials Science and Engineering: C, vol. 96, pp. 887-903, 2019. P. Chandra and R. Prakash (Eds.), Nanobiomaterial Engineering. Singapore: Springer Singapore, 2020, pp. 49-70. S. Dufort et al., "Nebulized Gadolinium-Based Nanoparticles: A Theranostic Approach for Lung Tumor Imaging and Radiosensitization", Small, vol. 11, no. 2, pp. 215-221, 2014. F. Ferriols Lisart and J. Pitarch Molina, "Principios de la fototerapia y su aplicación en el paciente oncológico", Farmacias Hospitalarias (Madrid), vol. 28, no. 3, pp. 75-83, 2004. Biblioteca Nicolás Salmerón, La Ecuación de Búsqueda, Almería: Universidad de Almería. L. Codina, "Ecuaciones de búsqueda: qué son y cómo se utilizan en bases de datos académicas · 1 - Operadores booleanos", Lluís Codina, 2017. [Online]. Available: https://www.lluiscodina.com/ecuaciones-de-busqueda-bases-datos-operadores-booleanos/. [Aceso: 06- Nov- 2020]. L. Codina, Bases de datos académicas para investigar en Comunicación Social: revisiones sistematizadas, grupo óptimo y protocolo de búsqueda, 1st ed. Barcelona: Lecciones del portal, 2017. Universidad Politécnica de Valencia, Guía general para búsquedas en bases de datos. Biblioteca y documentación científica, 2017 University of York, "PROSPERO", Crd.york.ac.uk. [Online]. Disponible: https://www.crd.york.ac.uk/prospero. U.S. National Library of Medicine, "Home - ClinicalTrials.gov", Clinicaltrials.gov. [Online]. Disponible: https://www.clinicaltrials.gov/ct2/home. F. Jiang et al., "Biocompatible CuO-decorated carbon nanoplatforms for multiplexed imaging and enhanced antitumor efficacy via combined photothermal therapy/chemodynamic therapy/chemotherapy", Science China Materials, vol. 63, no. 9, pp. 1818-1830, 2020. W. Wang et al., "Multifunctional red carbon dots: a theranostic platform for magnetic resonance imaging and fluorescence imaging-guided chemodynamic therapy", The Analyst, vol. 145, no. 10, pp. 3592-3597, 2020. N. Irmania, K. Dehvari, G. Gedda, P. Tseng and J. Chang, "Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform", Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 108, no. 4, pp. 1616-1625, 2020. B. Geng et al., "Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration", Chemical Engineering Journal, vol. 383, p. 123102, 2020. Y. Shen et al., "Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions", Carbon, vol. 156, pp. 558-567, 2020. L. Phan et al., "One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells", Biomaterials Science, vol. 7, no. 12, pp. 5187-5196, 2019. M. Chowdhury, S. Sarkar and P. Das, "Photosensitizer Tailored Surface Functionalized Carbon Dots for Visible Light Induced Targeted Cancer Therapy", ACS Applied Bio Materials, vol. 2, no. 11, pp. 4953-4965, 2019. Y. Zhao et al., "Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging", ACS Applied Nano Materials, vol. 1, no. 6, pp. 2544-2551, 2018. Z. Ji et al., "Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma", ACS Biomaterials Science & Engineering, vol. 4, no. 6, pp. 2089-2094, 2018. N. Licciardello et al., "Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice", Nanoscale, vol. 10, no. 21, pp. 9880-9891, 2018. Q. Jia et al., "A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2 ‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy", Advanced Materials, vol. 30, no. 13, p. 1706090, 2018. L. Zhang, Z. Lin, Y. Yu, B. Jiang and X. Shen, "Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy", Journal of Materials Chemistry B, vol. 6, no. 41, pp. 6534-6543, 2018. F. Du et al., "Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors", Biomaterials, vol. 121, pp. 109-120, 2017. What is Scopus Preview? - Scopus: Access and use Support center, Service.elsevier.com,2020. [Online] .Disponible:https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tips J. Hu, Q. Lei and X. Zhang, "Recent advances in photonanomedicines for enhanced cancer photodynamic therapy", Progress in Materials Science, vol. 114, 2020. W. Park, H. Shin, B. Choi, W. Rhim, K. Na and D. Keun Han, "Advanced hybrid nanomaterials for biomedical applications", Progress in Materials Science, vol. 114, 2020. S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao and B. Kong, "Hetero-atom-doped carbon dots: Doping strategies, properties and applications", Nano Today, vol. 33, 2020. X. Gui et al., "Fluorescent hollow mesoporous carbon spheres for drug loading and tumor treatment through 980-nm laser and microwave co-irradiation", Biomaterials, vol. 248, p. 120009, 2020. M. Magro, A. Venerando, A. Macone, G. Canettieri, E. Agostinelli and F. Vianello, "Nanotechnology-Based Strategies to Develop New Anticancer Therapies", Biomolecules, vol. 10, no. 5, p. 735, 2020. J. Yu, X. Loh, Y. Luo, S. Ge, X. Fan and J. Ruan, "Insights into the epigenetic effects of nanomaterials on cells", Biomaterials Science, vol. 8, no. 3, pp. 763-775, 2020. H. Zhu, N. Ni, S. Govindarajan, X. Ding and D. Leong, "Phototherapy with layered materials derived quantum dots", Nanoscale, vol. 12, no. 1, pp. 43-57, 2020. L. Dong, W. Li, L. Sun, L. Yu, Y. Chen and G. Hong, "Energy‐converting biomaterials for cancer therapy: Category, efficiency, and biosafety", WIREs Nanomedicine and Nanobiotechnology, 2020. B. Zhi, X. Yao, Y. Cui, G. Orr and C. Haynes, "Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots", Nanoscale, vol. 11, no. 43, pp. 20411-20428, 2019. B. Chen, M. Liu, C. Li and C. Huang, "Fluorescent carbon dots functionalization", Advances in Colloid and Interface Science, vol. 270, pp. 165-190, 2019. D. Lu, R. Tao and Z. Wang, "Carbon-based materials for photodynamic therapy: A mini-review", Frontiers of Chemical Science and Engineering, vol. 13, no. 2, pp. 310-323, 2019. Z. Zhu et al., "Surface charge controlled nucleoli selective staining with nanoscale carbon dots", PLOS ONE, vol. 14, no. 5, 2019. B. Yang, Y. Chen and J. Shi, "Reactive Oxygen Species (ROS)-Based Nanomedicine", Chemical Reviews, vol. 119, no. 8, pp. 4881-4985, 2019. J. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, 2018. J. Saleem, L. Wang and C. Chen, "Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment", Advanced Healthcare Materials, vol. 7, no. 20, 2018. S. Zou et al., "Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity", Nanoscale Research Letters, vol. 13, no. 1, 2018. |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/a568d9f6-ab6b-4bdf-85d9-09d0585929aa/download https://repository.urosario.edu.co/bitstreams/054806f1-5ec4-463e-b091-c5d0757a71de/download https://repository.urosario.edu.co/bitstreams/34c463ba-44d2-41b0-b5ec-87d7f13fac72/download https://repository.urosario.edu.co/bitstreams/08c3b095-40b7-4650-9476-4df36965eb76/download https://repository.urosario.edu.co/bitstreams/e94fed17-6239-455b-9f08-5953b6b7ab8e/download |
bitstream.checksum.fl_str_mv |
b9036a9d16301b7eaa6f45cef203a7bd fab9d9ed61d64f6ac005dee3306ae77e dab767be7a093b539031785b3bf95490 58386daba8233d7fd31717c4170ee293 5f55871130ffa0051a3ba76618b076c3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106520400822272 |
spelling |
Rodríguez Burbano, Diana Consuelo52994699600Ondo Méndez, Alejandro Oyono79831981600Borja Vega, Alvaro JoseIngeniero BiomédicoFull time441d4bb3-5168-4ffa-877f-68f7d25f815c6002020-12-11T22:22:24Z2020-12-11T22:22:24Z2020-12-07Las propiedades que sólo exhiben los materiales con dimensiones manométricas son el fundamento para el desarrollo o mejoría de diferentes aplicaciones biomédicas, como la radioterapia. Los nanomateriales ofrecen la posibilidad de hacer más eficiente esta forma de tratamiento, incrementando la radiosensibilización. Los puntos de carbono son nanopartículas que poseen propiedades físicas, ópticas y químicas que las hacen atractivas para ser implementadas en radioterapia. Sin embargo, al ser un nanomaterial recientemente descubierto, existen muchos campos de la investigación biomédica, como la radioterapia, en los que su potencial uso debe ser estudiado. Este documento de práctica de investigación consta de la realización de la fase inicial de una revisión sistemática de literatura sobre el uso de estas nanopartículas basadas en carbono en radioterapia. Se describe la metodología seguida para identificar la bibliografía más relevante relacionada con el tema, se clasifican de acuerdo a las características principales de la síntesis del nanomaterial y se describe la tendencia actual de las publicaciones relacionadas con el tema objetivo. Es importante mencionar que, al ser la fase inicial de un proyecto de investigación, no se ha terminado y aún se sigue trabajando en éste.The properties that only materials with manometric dimensions exhibit are the basis for the development or improvement of different biomedical applications, such as radiotherapy. Nanomaterials offer the possibility of making this form of treatment more efficient by increasing radiosensitivity. Carbon dots are nanoparticles that possess physical, optical and chemical properties that make them attractive to be implemented in radiotherapy. However, as a newly discovered nanomaterial, there are many fields of biomedical research, such as radiotherapy, in which its potential use should be studied. This research practice document consists of the initial phase of a systematic literature review on the use of these carbon-based nanoparticles in radiotherapy. The methodology followed to identify the most relevant literature related to the topic is described, classified according to the main characteristics of the nanomaterial synthesis and the current trend of publications related to the target topic is detailed. It is important to mention that, as this is the initial phase of a research project, it has not been completed and work is still ongoing.application/pdfhttps://doi.org/10.48713/10336_30705 https://repository.urosario.edu.co/handle/10336/30705spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAtribución-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nd/2.5/co/http://purl.org/coar/access_right/c_abf2P. Zhang, A. Darmon, N. Mohamed and S. Paris, "Radiotherapy-Activated Hafnium OxideNanoparticles Produce Abscopal Effect in a MouseColorectal Cancer Model", International Journal of Nanomedicine, vol. 15, pp. 3843-3850, 2020R. Baskar, K. Lee, R. Yeo and K. Yeoh, "Cancer and Radiation Therapy: Current Advances and Future Directions", International Journal of Medical Sciences, vol. 9, no. 3, pp. 193-199, 2012K. Haume et al., "Gold nanoparticles for cancer radiotherapy: a review", Cancer Nanotechnology, vol. 7, no. 1, 2016.Radiotherapy Risk Profile. World Health Organization, 2008.D. Kwatra, A. Venugopa and S. Anant, "Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer", Translational Cancer Research, vol. 2, no. 4, 2013.B. Zhivotovsky, B. Joseph and S. Orrenius, "Tumor Radiosensitivity and Apoptosis", Experimental Cell Research, vol. 248, no. 1, pp. 10-17, 1999.W. Garcia, "Radiosensibilidad y factores genéticos de riesgo en el cáncer de tiroides", Doctorado, Universidad Autónoma de Barcelona, 2012.K. Cepeda Forero et al., "Radioresistencia en glioblastoma: papel de la hipoxia en la genotoxicidad inducida por radiaciones ionizantes", Ciencia e Investigación Medico Estudiantil Latinoamericana, vol. 23, no. 1, 2018.J. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, p. 1802244, 2018S. Lim, W. Shen and Z. Gao, "Carbon quantum dots and their applications", Chemical Society Reviews, vol. 44, no. 1, pp. 362-381, 2015.N. Kumar and S. Kumbhat, Essentials in nanoscience and nanotechnology. New Jersey, Canada: John Wiley & Sons, Inc., 2016.M. Molaei, "Carbon quantum dots and their biomedical and therapeutic applications: a review", RSC Advances, vol. 9, no. 12, pp. 6460-6481, 2019.M. Tuerhong, Y. XU and X. YIN, "Review on Carbon Dots and Their Applications", Chinese Journal of Analytical Chemistry, vol. 45, no. 1, pp. 139-150, 2017.M. Abeloff, J. Niederhuber, J. Armitage and J. Tepper, Abeloff's Clinical oncology, 5 ed. Saunders, 2014, pp. 393-422.M. Granados García, A. Martín and J. Hinojosa Gómez, Tratamiento del cáncer. Distrito Federal: Editorial El Manual Moderno, 2016.M. Beyzadeoglu, G. Ozyigit and C. Ebruli, Basic Radiation Oncology, 1 ed. Springer-Verlag Berlin Heidelberg, 2010.Horst Frank, Jailbird, Espectro electromagnético. 2016.W. Potzel et al., "Interference Effects of Radiation Emitted from Nuclear Excitons", Hyperfine Interactions, vol. 151, pp. 263-281, 2003.S. Bushong, Manual de radiología para técnicos, 11 ed. Barcelona: Elsevier, 2018, pp. 146-162.M. Joiner and A. Kogel, Basic clinical radiobiology, 4 ed. Boca Raton: CRC Press/Taylor & Francis Group, 2009.J. Verdú Rotellar, M. Algara López, P. Foro Arnalot, M. Domínguez Tarragona and A. Blanch Mon, "Atención a los efectos secundarios de la radioterapia", Medifam, vol. 12, no. 7, pp. 426-435, 2002.P. Devi, S. Saini and K. Kim, "The advanced role of carbon quantum dots in nanomedical applications", Biosensors and Bioelectronics, vol. 141, pp. 1-17, 2019.K. Ghosal and A. Ghosh, "Carbon dots: The next generation platform for biomedical applications", Materials Science and Engineering: C, vol. 96, pp. 887-903, 2019.P. Chandra and R. Prakash (Eds.), Nanobiomaterial Engineering. Singapore: Springer Singapore, 2020, pp. 49-70.S. Dufort et al., "Nebulized Gadolinium-Based Nanoparticles: A Theranostic Approach for Lung Tumor Imaging and Radiosensitization", Small, vol. 11, no. 2, pp. 215-221, 2014.F. Ferriols Lisart and J. Pitarch Molina, "Principios de la fototerapia y su aplicación en el paciente oncológico", Farmacias Hospitalarias (Madrid), vol. 28, no. 3, pp. 75-83, 2004.Biblioteca Nicolás Salmerón, La Ecuación de Búsqueda, Almería: Universidad de Almería.L. Codina, "Ecuaciones de búsqueda: qué son y cómo se utilizan en bases de datos académicas · 1 - Operadores booleanos", Lluís Codina, 2017. [Online]. Available: https://www.lluiscodina.com/ecuaciones-de-busqueda-bases-datos-operadores-booleanos/. [Aceso: 06- Nov- 2020].L. Codina, Bases de datos académicas para investigar en Comunicación Social: revisiones sistematizadas, grupo óptimo y protocolo de búsqueda, 1st ed. Barcelona: Lecciones del portal, 2017.Universidad Politécnica de Valencia, Guía general para búsquedas en bases de datos. Biblioteca y documentación científica, 2017University of York, "PROSPERO", Crd.york.ac.uk. [Online]. Disponible: https://www.crd.york.ac.uk/prospero.U.S. National Library of Medicine, "Home - ClinicalTrials.gov", Clinicaltrials.gov. [Online]. Disponible: https://www.clinicaltrials.gov/ct2/home.F. Jiang et al., "Biocompatible CuO-decorated carbon nanoplatforms for multiplexed imaging and enhanced antitumor efficacy via combined photothermal therapy/chemodynamic therapy/chemotherapy", Science China Materials, vol. 63, no. 9, pp. 1818-1830, 2020.W. Wang et al., "Multifunctional red carbon dots: a theranostic platform for magnetic resonance imaging and fluorescence imaging-guided chemodynamic therapy", The Analyst, vol. 145, no. 10, pp. 3592-3597, 2020.N. Irmania, K. Dehvari, G. Gedda, P. Tseng and J. Chang, "Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform", Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 108, no. 4, pp. 1616-1625, 2020.B. Geng et al., "Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration", Chemical Engineering Journal, vol. 383, p. 123102, 2020.Y. Shen et al., "Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions", Carbon, vol. 156, pp. 558-567, 2020.L. Phan et al., "One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells", Biomaterials Science, vol. 7, no. 12, pp. 5187-5196, 2019.M. Chowdhury, S. Sarkar and P. Das, "Photosensitizer Tailored Surface Functionalized Carbon Dots for Visible Light Induced Targeted Cancer Therapy", ACS Applied Bio Materials, vol. 2, no. 11, pp. 4953-4965, 2019.Y. Zhao et al., "Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging", ACS Applied Nano Materials, vol. 1, no. 6, pp. 2544-2551, 2018.Z. Ji et al., "Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma", ACS Biomaterials Science & Engineering, vol. 4, no. 6, pp. 2089-2094, 2018.N. Licciardello et al., "Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice", Nanoscale, vol. 10, no. 21, pp. 9880-9891, 2018.Q. Jia et al., "A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2 ‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy", Advanced Materials, vol. 30, no. 13, p. 1706090, 2018.L. Zhang, Z. Lin, Y. Yu, B. Jiang and X. Shen, "Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy", Journal of Materials Chemistry B, vol. 6, no. 41, pp. 6534-6543, 2018.F. Du et al., "Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors", Biomaterials, vol. 121, pp. 109-120, 2017.What is Scopus Preview? - Scopus: Access and use Support center, Service.elsevier.com,2020. [Online] .Disponible:https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tipsJ. Hu, Q. Lei and X. Zhang, "Recent advances in photonanomedicines for enhanced cancer photodynamic therapy", Progress in Materials Science, vol. 114, 2020.W. Park, H. Shin, B. Choi, W. Rhim, K. Na and D. Keun Han, "Advanced hybrid nanomaterials for biomedical applications", Progress in Materials Science, vol. 114, 2020.S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao and B. Kong, "Hetero-atom-doped carbon dots: Doping strategies, properties and applications", Nano Today, vol. 33, 2020.X. Gui et al., "Fluorescent hollow mesoporous carbon spheres for drug loading and tumor treatment through 980-nm laser and microwave co-irradiation", Biomaterials, vol. 248, p. 120009, 2020.M. Magro, A. Venerando, A. Macone, G. Canettieri, E. Agostinelli and F. Vianello, "Nanotechnology-Based Strategies to Develop New Anticancer Therapies", Biomolecules, vol. 10, no. 5, p. 735, 2020.J. Yu, X. Loh, Y. Luo, S. Ge, X. Fan and J. Ruan, "Insights into the epigenetic effects of nanomaterials on cells", Biomaterials Science, vol. 8, no. 3, pp. 763-775, 2020.H. Zhu, N. Ni, S. Govindarajan, X. Ding and D. Leong, "Phototherapy with layered materials derived quantum dots", Nanoscale, vol. 12, no. 1, pp. 43-57, 2020.L. Dong, W. Li, L. Sun, L. Yu, Y. Chen and G. Hong, "Energy‐converting biomaterials for cancer therapy: Category, efficiency, and biosafety", WIREs Nanomedicine and Nanobiotechnology, 2020.B. Zhi, X. Yao, Y. Cui, G. Orr and C. Haynes, "Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots", Nanoscale, vol. 11, no. 43, pp. 20411-20428, 2019.B. Chen, M. Liu, C. Li and C. Huang, "Fluorescent carbon dots functionalization", Advances in Colloid and Interface Science, vol. 270, pp. 165-190, 2019.D. Lu, R. Tao and Z. Wang, "Carbon-based materials for photodynamic therapy: A mini-review", Frontiers of Chemical Science and Engineering, vol. 13, no. 2, pp. 310-323, 2019.Z. Zhu et al., "Surface charge controlled nucleoli selective staining with nanoscale carbon dots", PLOS ONE, vol. 14, no. 5, 2019.B. Yang, Y. Chen and J. Shi, "Reactive Oxygen Species (ROS)-Based Nanomedicine", Chemical Reviews, vol. 119, no. 8, pp. 4881-4985, 2019.J. Xie, L. Gong, S. Zhu, Y. Yong, Z. Gu and Y. Zhao, "Emerging Strategies of Nanomaterial‐Mediated Tumor Radiosensitization", Advanced Materials, vol. 31, no. 3, 2018.J. Saleem, L. Wang and C. Chen, "Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment", Advanced Healthcare Materials, vol. 7, no. 20, 2018.S. Zou et al., "Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity", Nanoscale Research Letters, vol. 13, no. 1, 2018.instname:Universidad del Rosarioinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFototerapiaRadioterapiaRevisión de literaturaAplicación medica de NanomaterialesNanotecnología en la medicinaPuntos de Carbono en terapia de radiaciónMedicina experimental619600PhototherapyRadiotherapyLiterature ReviewNanomaterials medical applicationNanotechnology in medicineCarbon points in radiation therapyFase inicial de una revisión sistemática de literatura sobre el uso de puntos de carbono en radioterapiaInitial phase of a systematic literature review on the use of carbon dots in radiotherapybachelorThesisRevisión de la literaturaTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludORIGINALBorjaVega-AlvaroJose-2020.pdfBorjaVega-AlvaroJose-2020.pdfapplication/pdf1011686https://repository.urosario.edu.co/bitstreams/a568d9f6-ab6b-4bdf-85d9-09d0585929aa/downloadb9036a9d16301b7eaa6f45cef203a7bdMD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/054806f1-5ec4-463e-b091-c5d0757a71de/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.urosario.edu.co/bitstreams/34c463ba-44d2-41b0-b5ec-87d7f13fac72/downloaddab767be7a093b539031785b3bf95490MD53TEXTBorjaVega-AlvaroJose-2020.pdf.txtBorjaVega-AlvaroJose-2020.pdf.txtExtracted texttext/plain55942https://repository.urosario.edu.co/bitstreams/08c3b095-40b7-4650-9476-4df36965eb76/download58386daba8233d7fd31717c4170ee293MD54THUMBNAILBorjaVega-AlvaroJose-2020.pdf.jpgBorjaVega-AlvaroJose-2020.pdf.jpgGenerated Thumbnailimage/jpeg2569https://repository.urosario.edu.co/bitstreams/e94fed17-6239-455b-9f08-5953b6b7ab8e/download5f55871130ffa0051a3ba76618b076c3MD5510336/30705oai:repository.urosario.edu.co:10336/307052022-05-02 07:37:22.040074http://creativecommons.org/licenses/by-nd/2.5/co/Atribución-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |