Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo
Las Actinobacterias de ambientes tropicales no intervenidos provenientes de los ecosistemas de páramo de Colombia, pueden ser novedosos en sus adaptaciones microbianas por la presencia de BGCs (clústers de genes biosintéticos), genes de resistencia y moléculas bioactivas. En este estudio se caracter...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/34793
- Acceso en línea:
- https://doi.org/10.48713/10336_34793
https://repository.urosario.edu.co/handle/10336/34793
- Palabra clave:
- Actinobacterias de ambientes tropicales
Actividad antimicrobiana
Ecosistemas de páramo de Colombia
Adaptaciones microbianas
Análisis microbianos
Antibacteriales
Microbiología
Actinobacteria from tropical environments
Antimicrobial activity
Paramo Ecosystems of Colombia
Microbial adaptations
Microbial analysis
Antibacterial
- Rights
- License
- Restringido (Temporalmente bloqueado)
id |
EDOCUR2_9c2735165b4ef767cb0f06083f42af18 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/34793 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.es.fl_str_mv |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
dc.title.TranslatedTitle.es.fl_str_mv |
Genomics and in vitro characterization of actinobacteria from tropical environments reveals their bioactive potential |
title |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
spellingShingle |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo Actinobacterias de ambientes tropicales Actividad antimicrobiana Ecosistemas de páramo de Colombia Adaptaciones microbianas Análisis microbianos Antibacteriales Microbiología Actinobacteria from tropical environments Antimicrobial activity Paramo Ecosystems of Colombia Microbial adaptations Microbial analysis Antibacterial |
title_short |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
title_full |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
title_fullStr |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
title_full_unstemmed |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
title_sort |
Genómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivo |
dc.contributor.advisor.none.fl_str_mv |
Zambrano, Maria Mercedes |
dc.contributor.none.fl_str_mv |
Corrales, Adriana |
dc.subject.es.fl_str_mv |
Actinobacterias de ambientes tropicales Actividad antimicrobiana Ecosistemas de páramo de Colombia Adaptaciones microbianas Análisis microbianos Antibacteriales |
topic |
Actinobacterias de ambientes tropicales Actividad antimicrobiana Ecosistemas de páramo de Colombia Adaptaciones microbianas Análisis microbianos Antibacteriales Microbiología Actinobacteria from tropical environments Antimicrobial activity Paramo Ecosystems of Colombia Microbial adaptations Microbial analysis Antibacterial |
dc.subject.ddc.es.fl_str_mv |
Microbiología |
dc.subject.keyword.es.fl_str_mv |
Actinobacteria from tropical environments Antimicrobial activity Paramo Ecosystems of Colombia Microbial adaptations Microbial analysis Antibacterial |
description |
Las Actinobacterias de ambientes tropicales no intervenidos provenientes de los ecosistemas de páramo de Colombia, pueden ser novedosos en sus adaptaciones microbianas por la presencia de BGCs (clústers de genes biosintéticos), genes de resistencia y moléculas bioactivas. En este estudio se caracterizó el potencial funcional de siete Actinobacterias provenientes del Parque Nacional Natural (PNN) de los Nevados y PNN Chingaza en condiciones de laboratorio y a nivel genómico. 16 aislamientos fueron evaluados mediante pruebas de actividad antimicrobiana contra bacterias de importancia clínica como Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae y Pseudomonas aeruginosa. De estos, se seleccionaron siete del fílum Actinobacteria según clasificación por el gen 16S rRNA. Algunos de los sobrenadantes de estas Actinobacterias, pertenecientes a los géneros Arthrobacter sp., Streptomyces , Subtercola sp, Amycolatopsis sp. y Rhodococccus sp., inhibieron el crecimiento de E. coli en un 47%, K. pneumoniae en un 68%, S. aureus 15% y P. aeuruginosa 28%. Se secuenciaron siete genomas mediante MinION (NanoPore) y cinco mediante Illumina (Novaseq 6000). Tras ensamblaje, de novo de secuencias largas (ONT) e híbridos (ONT+Illumina), más anotación funcional, se encontraron BGCs de diversas rutas biosintéticas como terpenos, RiPP-like, NRPS, PKS, ectoina, sideróforos y oligosacáridos. Estos BGCs se asociaron a 33 posibles compuestos bioactivos con funciones antibióticas, antioxidantes, antitumorales, quelantes y de osmorregulación. Se encontraron 2557 genes de resistencia asociados a mecanismos de resistencia por expulsión del antibiótico, alteración y reemplazo del diana del antibiótico, inactivación del antibiótico y reducción de la permeabilidad del antibiótico. Tanto la actividad antimicrobiana in vitro de estos aislamientos, como la presencia de BGCs y de genes de resistencia a antibióticos indican diversidad genómica y capacidad funcional asociada a producción de metabolitos bioactivos en Actinobacterias de páramo. Este trabajo sienta las bases para caracterizar nuevos compuestos antimicrobianos y potencial funcional en microorganismos ambientales. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-25T19:34:13Z |
dc.date.available.none.fl_str_mv |
2022-08-25T19:34:13Z |
dc.date.created.none.fl_str_mv |
2022-08-23 |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2023-08-25 |
dc.type.es.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.es.fl_str_mv |
Trabajo de grado |
dc.type.spa.es.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_34793 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/34793 |
url |
https://doi.org/10.48713/10336_34793 https://repository.urosario.edu.co/handle/10336/34793 |
dc.language.iso.es.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.es.fl_str_mv |
Restringido (Temporalmente bloqueado) |
rights_invalid_str_mv |
Restringido (Temporalmente bloqueado) http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.es.fl_str_mv |
68 pp |
dc.format.mimetype.es.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Facultad de Ciencias Naturales |
dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Naturales |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.es.fl_str_mv |
1. Alcock B, Raphenya A, Lau T, Tsang K, Bouchard M, Edalatmand A, et al., (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 8:517-525. 2. Altschul S.F, Gish W, Miller W, Myers E. y Lipman D. (1990) Basic local alignment search tool. J Mol Biol. 215: 403-410. 3. Andrews S. (2010).FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015), "FastQC," https://qubeshub.org/resources/fastqc 4. Araos R, García P, Chanqueo L y Labarca J. (2012). Daptomicina: características farmacológicas y aporte en el tratamiento de infecciones por cocáceas gram positivas. R chilena de infectología. 29: 127-131. 5. Bankevich A, Nurk S, Antipov D, et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol.19:455-477. 6. Barka E, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y,van Wezel G. (2016)Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbio. Mol. Biol. Reviews. 80:1-43. 7. Berglund B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect. ecology & epidemiol. 5: 28563-28564. 8. Blin K, Kim HU, Medema MH, Weber T. (2019). Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 19: 1103-1113. 9. Blin K, Shaw S, Kloosterman A, Charlop-Powers Z, van Weezel G, Medema MH y Weber T. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49:29-35. 10. Bolger A, Lohse M y Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170. 11. Bolla J, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Pagès J, et al. (2011). Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS letters. 585: 1682-1690. 12. Charousová I, Medo J, Halenárová E, Javoreková S. (2017). Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. J Adv Pharm Technol Res. 8:46-51. 13. Chen R, Wong H, Burns BP. (2019). New Approaches to Detect Biosynthetic Gene Clusters in the Environment. Medicines. 6: 9-11. 14. Culp E, Yim G, Waglechner N, Wang W, Pawlowski A, Wright G. (2019) Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nat. Biotechnol. 37: 1149–1154. 15. Dávila J, Hoskisson P, Paterlini P, Romero C, Álvarez A. (2020). Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics. 112: 4684–4689. 16. De Carvalho C, Costa S, Fernandes P, Couto I y Viveiros M. (2014). Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. in physiology. 5: 133. 17. De Coster W, D’Hert S, Schultz D.T, Cruts M y Van Broeckhoven C. (2018). NanoPack: visualizing and processing long-read sequencing data, Bioinformatics. 34: 2666–2669. 18. Delahaye C, Nicolas J. (2021). Sequencing DNA with nanopores: Troubles and biases. PLoS ONE. 16: 257521. 19. Delcour A. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et biophysica acta. 1794: 808-16. 20. Doroghazi J, Metcalf W. (2013). Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics. 14: 609-611. 21. Ewels P, Magnusson M, Lundin S, Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics. 32: 3047–3048. 22. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39: 783-791. 23. Gozari M, Zaheri A, Jahromi S., Gozari M, Karimzadeh R. (2019). Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int. J. Microbiol. 22: 521-530. 24. Gomez-Escribano J, Alt S, Bibb M. (2016). Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products. Mar Drugs. 14:78. 25. Gurevich A, Saveliev V, Vyahhi N y Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics. 29: 1072–1075. 26. Ha L, Vanlerberghe L, Toan T, Dewettinck K y Messens K. (2015). Comparative evaluation of six extraction methods for DNA quantification and PCR detection in cocoa and cocoa-derived products. Food Biotechnol. 29: 1-19. 27. Hamedi J, Poorinmohammad N. (2017). The cellular structure of Actinobacteria. En: Wink J, Mohammadipanah F, Hamedi J. Biology and biotechnology of Actinobacteria. Springer. 5-28. 28. Heng L. (2018). Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics. 34: 3094–3100. 30. Jiang L, Peng Y, Seo J, Jeon D, Jo M, Lee J, Lee J, et al. (2022). Subtercola endophyticus sp. nov., a cold-adapted bacterium isolated from Abies koreana. Pre-print. Acceso: 21-04-22. 31. Jiang X, Hashim M, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer M, Lee Y. (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. commu. 8: 15784. 32. Kang H y Brady S. (2013). Arimetamycin A: improving clinically relevant families of natural products through sequence‐guided screening of soil metagenomes. Angewandte Chemie International Edition, 52: 11063-11067. 33. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. 34. Kolmogorov M, Yuan J, Lin Y y Pevzner P.(2019). Assembly of Long Error-Prone Reads Using Repeat Graphs. Nature Biotechnology. 37: 540-546. 35. Kumari S, Stecher G, Li M, Knyaz C y Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. 36. Kumari R, Singh P, Lal R. Genetics and Genomics of the Genus Amycolatopsis. (2016). Indian J Microbiol. 56: 233-46. 37. Leger A. y Leonardi T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4: 1236-12340. 38. Mao D, Okada B, Wu Y, Xu F y Seyedsayamdost M. (2018). Recent advances in activating silent biosynthetic gene clusters in bacteria. Current opinion in microbiology, 45, 156–163. 39. Mao D, Okada B. K, Wu Y, Xu F y Seyedsayamdost M. R. (2018). Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 45:156–163. 40. medaka: Sequence correction provided by ONT Research. https://github.com/nanoporetech/medaka, Accessed 24 Apl 2022. [Google Scholar] 41. Miller W, Munita J y Arias C. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 12: 1221-1236. 42. Minoru K y Susumu G. (2000). Kegg: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res. 28: 27–30. 43. Mungan M, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. (2020). ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 48:546-552. 44. Munaganti R, Muvva V, Konda S, Naragani K, Mangamuri U, Dorigondla K, Akkewar D. (2016). Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz J Microbiol. 47:1030-1038. 45. Nakatsu C, Barabote, R., Thompson, S. et al. (2013) Complete genome sequence of Arthrobacter sp. strain FB24. Stand in Genomic Sci. 9: 106–116 46. Nindita Y, Cao Z, Fauzi A, Teshima A, Misaki Y, Muslimin R, et al. (2019). The genome sequence of Streptomyces rochei, which carries a linear chromosome and three characteristic linear plasmids. Scien. reports. 9: 1-11. 47. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk H-P, Goodfellow M and Göker M. (2018). Genome-Based Taxonomic classification of the Fílum Actinobacteria. Front. Microbiol. 9:2007. 48. Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, et al. (2015) Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance. PLoS One. 10: e0139467. 49. Parks D, Imelfort M, Skennerton C, Hugenholtz P y Tyson G. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome research, 25: 1043-1055. 50. Poorinmohammad N, Bagheban-Shemirani R y Hamedi J. (2019). Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie van Leeuwenhoek. 112: 1477–1499. 51. Rajwani R, Ohlemacher S, Zhao G, Liu H y Bewley C. (2021). Genome-Guided Discovery of Natural Products through Multiplexed Low-Coverage Whole-Genome Sequencing of Soil Actinomycetes on Oxford Nanopore Flongle. Msystems. 6: 1020-21. 52. Reen FJ, Romano S, Dobson AD, O'Gara F. (2015). The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Mar Drugs. 13: 4754-4783. 53. Reygaert W.(2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4: 482–501. 54. Richter M, Rosselló-Móra R, Glöckner F, Peplies J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 32: 929–931. 55. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. (2018) The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46:282-288. 56. Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30:2068-2069. 57. Sierra A. (2018). Análisis de la diversidad y el potencial bioactivo de bacterias asociadas a líquenes de páramo en el parque nacional natural Chingaza (Tesis de pregrado no publicada) Universidad industrial de Santander. 58. Sierra M, Danko D, Sandoval T, Pishchany G, Moncada B, Kolter R y Zambrano M M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Front. Microbiol. 11: 398. 59. Sripairoj P, Suwanborirux K y Tanasupawat S. (2013). Characterization and antimicrobial activity of Amycolatopsis strains isolated from Thai soils. J. of Applied Pharmaceutical Science, 3: 011-016. 29. Jiang J, He X, Cane D. (2007). Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol. 3: 711-5. 60. Somerville W, Thibert L, Schwartzman K, Behr M. (1997). Extraction of Mycobacterium tuberculosis DNA: a question of Containment. J. Clin. Microbiol. 43: 2996-2997. 61. Vargas M-N, Triana J, Diaz-Puentes N, Gómez V, Romero C, Villabona N, Cruz M, Corrales A, Chaib M, Del Portillo P, Zambrano M. (2022). Potencial funcional y genómico en Actinobacterias de ecosistemas tropicales. Poster presentado en: VI congreso colombiano de biología computacional y bioinformática: 28 de marzo al 1 abril de 2022. Cartagena. Colombia. 62. Vaser R, Sović I, Nagarajan N y Šikić M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome research, 27: 737–746. 63. Villalobos A, Wiese J, Imhoff J, Dorador C, Keller A, Hentschel U. (2019). Systematic Affiliation and Genome Analysis of Subtercola vilae DB165T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake. Microorganisms. 23: 7-107. 64. Walker B, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. (2014) Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 9: e112963. 65. Webber M y Piddock J. (2003). La importancia de las bombas de expulsión en la resistencia bacteriana a los antibióticos. Revista de quimioterapia antimicrobiana. 51: 9–11. 66. Wick R, Judd L, Gorrie C, Holt K. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 13: e1005595. 67. Wick R, Judd L. y Holt E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20: 1-10. 68. Woo P, Lau S, Huang Y, Yuen K-Y. (2005). Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Med Hyp. 67: 1297–1304. 69. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson D. (2012). Iron chelators for the treatment of cancer. Curr Med Chem. 19: 2689-702 70. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K. (2005). Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology (Reading). 151: 2899-2905. 71. Yong-pil K, Hiroshi T, Kousuke I, Takashi F, Atsuko M, Yoko T y Satoshi O.(2003). Akanawaenes, Novel antifungal antibiotics produced by Streptomyces sp. J. Antibiot. 56:5218. 72. Zhou X, Huang H, Li J, Song Y, Jiang R, Liu J, Ju J, et al. (2014). New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii. Tetrahedron. 70: 7795-7801. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9494950c-a52b-4b12-9340-88a328e7d709/download https://repository.urosario.edu.co/bitstreams/b25e963a-8c30-499c-87ec-c42e70ef255c/download https://repository.urosario.edu.co/bitstreams/3c5ef4bd-db58-4fdb-80df-2ec0bd6b5245/download https://repository.urosario.edu.co/bitstreams/fb5c3b35-7385-45e8-aa97-016a1c9ffc6b/download |
bitstream.checksum.fl_str_mv |
fab9d9ed61d64f6ac005dee3306ae77e 4bbc2bea90ac65e4b63a3ac87136e3d9 3485e6bda1ce453c6d7946e3f40de47b aa27e2134bb361db3828ddca61aa2938 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167740257140736 |
spelling |
Corrales, Adriana43260206600Zambrano, Maria Mercedes0b689b0d-1235-4ba1-a2ac-67bd0b5142d9600Vargas Florez, María NathaliaMagíster en Ciencias NaturalesMaestríaFull timeb43cebfa-aeca-43a5-b766-45da1743d9d86002022-08-25T19:34:13Z2022-08-25T19:34:13Z2022-08-23info:eu-repo/date/embargoEnd/2023-08-25Las Actinobacterias de ambientes tropicales no intervenidos provenientes de los ecosistemas de páramo de Colombia, pueden ser novedosos en sus adaptaciones microbianas por la presencia de BGCs (clústers de genes biosintéticos), genes de resistencia y moléculas bioactivas. En este estudio se caracterizó el potencial funcional de siete Actinobacterias provenientes del Parque Nacional Natural (PNN) de los Nevados y PNN Chingaza en condiciones de laboratorio y a nivel genómico. 16 aislamientos fueron evaluados mediante pruebas de actividad antimicrobiana contra bacterias de importancia clínica como Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae y Pseudomonas aeruginosa. De estos, se seleccionaron siete del fílum Actinobacteria según clasificación por el gen 16S rRNA. Algunos de los sobrenadantes de estas Actinobacterias, pertenecientes a los géneros Arthrobacter sp., Streptomyces , Subtercola sp, Amycolatopsis sp. y Rhodococccus sp., inhibieron el crecimiento de E. coli en un 47%, K. pneumoniae en un 68%, S. aureus 15% y P. aeuruginosa 28%. Se secuenciaron siete genomas mediante MinION (NanoPore) y cinco mediante Illumina (Novaseq 6000). Tras ensamblaje, de novo de secuencias largas (ONT) e híbridos (ONT+Illumina), más anotación funcional, se encontraron BGCs de diversas rutas biosintéticas como terpenos, RiPP-like, NRPS, PKS, ectoina, sideróforos y oligosacáridos. Estos BGCs se asociaron a 33 posibles compuestos bioactivos con funciones antibióticas, antioxidantes, antitumorales, quelantes y de osmorregulación. Se encontraron 2557 genes de resistencia asociados a mecanismos de resistencia por expulsión del antibiótico, alteración y reemplazo del diana del antibiótico, inactivación del antibiótico y reducción de la permeabilidad del antibiótico. Tanto la actividad antimicrobiana in vitro de estos aislamientos, como la presencia de BGCs y de genes de resistencia a antibióticos indican diversidad genómica y capacidad funcional asociada a producción de metabolitos bioactivos en Actinobacterias de páramo. Este trabajo sienta las bases para caracterizar nuevos compuestos antimicrobianos y potencial funcional en microorganismos ambientales.Actinobacteria from pristine tropical environments such as the Colombian paramos could have novel adaptations in biosynthetic gene clusters (BGCs), resistance genes and bioactive compounds. In this study, the functional potential of seven Actinobacteria from the National Natural Park (NNP) of Nevados and the NNP of Chingaza was characterized under in vitro laboratory conditions and the genomic level. 16 isolates from these environments were tested for antimicrobial activity against clinically important bacteria such as Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Seven out of these 16 isolates were confirmed as Actinobacteria through 16S rRNA gene sequencing. The supernatants from some of these Actinobacterial isolates, such as Arthrobacter, Streptomyces, Subtercola, Amycolatopsis and Rhodococccus inhibited the growth of E. coli by 47%, K. pneumoniae by 68%, S. aureus by 15% and P. aeruginosa by 28%. The genomes of these seven Actinobacteria were sequenced through Nanopore (MinION) and five of these genomes were also sequenced through Illumina (Novaseq 6000). After long-read de novo assembly (for Nanopore) and hybrid assemblies (for Nanopore and Illumina), we found BGCs coding for various biosynthetic pathways such as terpenes, Ribosomally synthesized and post-translationally modified peptides (RiPP-like) products, Nonribosomal peptides (NRPS), Polyketide synthases (PKS), ectoine, siderophores and oligosaccharides. We found coding potential for 33 bioactive compounds with antibiotic, antioxidant, antitumor, chelating and osmoregulatory functions. Moreover, we found 2557 resistance genes associated with antibiotic expulsion, antibiotic target alteration and replacement, antibiotic inactivation, and reduced antibiotic permeability. The in vitro antimicrobial activity of these isolates, along with the presence of BGCs and antibiotic resistance genes, shows the genomic diversity and functional capacity associated with the production of bioactive metabolites by Actinobacteria from the paramos. This work lays the groundwork to characterize new antimicrobial compounds and functional potential in environmental microorganisms.2022-08-25 14:50:01: Script de automatizacion de embargos. Cordial saludo mi nombre es María Nathalia Vargas Flórez y acabo de subir al repositorio mi trabajo de grado. En este correo, Yo María Nathalia con C.C 1073517210, declaro que el documento titulado Genómica de Actinobacterias revela su potencial bioactivo tiene acceso restringido debido a que en los próximos meses de realizará la publicación de los datos obtenidos en la tesis. Gracias por su atenciónCorpoGenUniversidad del RosarioMinciencias68 ppapplication/pdfhttps://doi.org/10.48713/10336_34793 https://repository.urosario.edu.co/handle/10336/34793spaUniversidad del RosarioFacultad de Ciencias NaturalesMaestría en Ciencias NaturalesRestringido (Temporalmente bloqueado)http://purl.org/coar/access_right/c_f1cf1. Alcock B, Raphenya A, Lau T, Tsang K, Bouchard M, Edalatmand A, et al., (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 8:517-525.2. Altschul S.F, Gish W, Miller W, Myers E. y Lipman D. (1990) Basic local alignment search tool. J Mol Biol. 215: 403-410.3. Andrews S. (2010).FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015), "FastQC," https://qubeshub.org/resources/fastqc4. Araos R, García P, Chanqueo L y Labarca J. (2012). Daptomicina: características farmacológicas y aporte en el tratamiento de infecciones por cocáceas gram positivas. R chilena de infectología. 29: 127-131.5. Bankevich A, Nurk S, Antipov D, et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol.19:455-477.6. Barka E, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y,van Wezel G. (2016)Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbio. Mol. Biol. Reviews. 80:1-43.7. Berglund B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect. ecology & epidemiol. 5: 28563-28564.8. Blin K, Kim HU, Medema MH, Weber T. (2019). Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 19: 1103-1113.9. Blin K, Shaw S, Kloosterman A, Charlop-Powers Z, van Weezel G, Medema MH y Weber T. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49:29-35.10. Bolger A, Lohse M y Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.11. Bolla J, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Pagès J, et al. (2011). Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS letters. 585: 1682-1690.12. Charousová I, Medo J, Halenárová E, Javoreková S. (2017). Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. J Adv Pharm Technol Res. 8:46-51.13. Chen R, Wong H, Burns BP. (2019). New Approaches to Detect Biosynthetic Gene Clusters in the Environment. Medicines. 6: 9-11.14. Culp E, Yim G, Waglechner N, Wang W, Pawlowski A, Wright G. (2019) Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nat. Biotechnol. 37: 1149–1154.15. Dávila J, Hoskisson P, Paterlini P, Romero C, Álvarez A. (2020). Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics. 112: 4684–4689.16. De Carvalho C, Costa S, Fernandes P, Couto I y Viveiros M. (2014). Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. in physiology. 5: 133.17. De Coster W, D’Hert S, Schultz D.T, Cruts M y Van Broeckhoven C. (2018). NanoPack: visualizing and processing long-read sequencing data, Bioinformatics. 34: 2666–2669.18. Delahaye C, Nicolas J. (2021). Sequencing DNA with nanopores: Troubles and biases. PLoS ONE. 16: 257521.19. Delcour A. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et biophysica acta. 1794: 808-16.20. Doroghazi J, Metcalf W. (2013). Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics. 14: 609-611.21. Ewels P, Magnusson M, Lundin S, Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics. 32: 3047–3048.22. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39: 783-791.23. Gozari M, Zaheri A, Jahromi S., Gozari M, Karimzadeh R. (2019). Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int. J. Microbiol. 22: 521-530.24. Gomez-Escribano J, Alt S, Bibb M. (2016). Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products. Mar Drugs. 14:78.25. Gurevich A, Saveliev V, Vyahhi N y Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics. 29: 1072–1075.26. Ha L, Vanlerberghe L, Toan T, Dewettinck K y Messens K. (2015). Comparative evaluation of six extraction methods for DNA quantification and PCR detection in cocoa and cocoa-derived products. Food Biotechnol. 29: 1-19.27. Hamedi J, Poorinmohammad N. (2017). The cellular structure of Actinobacteria. En: Wink J, Mohammadipanah F, Hamedi J. Biology and biotechnology of Actinobacteria. Springer. 5-28.28. Heng L. (2018). Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics. 34: 3094–3100.30. Jiang L, Peng Y, Seo J, Jeon D, Jo M, Lee J, Lee J, et al. (2022). Subtercola endophyticus sp. nov., a cold-adapted bacterium isolated from Abies koreana. Pre-print. Acceso: 21-04-22.31. Jiang X, Hashim M, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer M, Lee Y. (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. commu. 8: 15784.32. Kang H y Brady S. (2013). Arimetamycin A: improving clinically relevant families of natural products through sequence‐guided screening of soil metagenomes. Angewandte Chemie International Edition, 52: 11063-11067.33. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.34. Kolmogorov M, Yuan J, Lin Y y Pevzner P.(2019). Assembly of Long Error-Prone Reads Using Repeat Graphs. Nature Biotechnology. 37: 540-546.35. Kumari S, Stecher G, Li M, Knyaz C y Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.36. Kumari R, Singh P, Lal R. Genetics and Genomics of the Genus Amycolatopsis. (2016). Indian J Microbiol. 56: 233-46.37. Leger A. y Leonardi T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4: 1236-12340.38. Mao D, Okada B, Wu Y, Xu F y Seyedsayamdost M. (2018). Recent advances in activating silent biosynthetic gene clusters in bacteria. Current opinion in microbiology, 45, 156–163.39. Mao D, Okada B. K, Wu Y, Xu F y Seyedsayamdost M. R. (2018). Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 45:156–163.40. medaka: Sequence correction provided by ONT Research. https://github.com/nanoporetech/medaka, Accessed 24 Apl 2022. [Google Scholar]41. Miller W, Munita J y Arias C. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 12: 1221-1236.42. Minoru K y Susumu G. (2000). Kegg: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res. 28: 27–30.43. Mungan M, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. (2020). ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 48:546-552.44. Munaganti R, Muvva V, Konda S, Naragani K, Mangamuri U, Dorigondla K, Akkewar D. (2016). Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz J Microbiol. 47:1030-1038.45. Nakatsu C, Barabote, R., Thompson, S. et al. (2013) Complete genome sequence of Arthrobacter sp. strain FB24. Stand in Genomic Sci. 9: 106–11646. Nindita Y, Cao Z, Fauzi A, Teshima A, Misaki Y, Muslimin R, et al. (2019). The genome sequence of Streptomyces rochei, which carries a linear chromosome and three characteristic linear plasmids. Scien. reports. 9: 1-11.47. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk H-P, Goodfellow M and Göker M. (2018). Genome-Based Taxonomic classification of the Fílum Actinobacteria. Front. Microbiol. 9:2007.48. Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, et al. (2015) Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance. PLoS One. 10: e0139467.49. Parks D, Imelfort M, Skennerton C, Hugenholtz P y Tyson G. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome research, 25: 1043-1055.50. Poorinmohammad N, Bagheban-Shemirani R y Hamedi J. (2019). Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie van Leeuwenhoek. 112: 1477–1499.51. Rajwani R, Ohlemacher S, Zhao G, Liu H y Bewley C. (2021). Genome-Guided Discovery of Natural Products through Multiplexed Low-Coverage Whole-Genome Sequencing of Soil Actinomycetes on Oxford Nanopore Flongle. Msystems. 6: 1020-21.52. Reen FJ, Romano S, Dobson AD, O'Gara F. (2015). The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Mar Drugs. 13: 4754-4783.53. Reygaert W.(2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4: 482–501.54. Richter M, Rosselló-Móra R, Glöckner F, Peplies J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 32: 929–931.55. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. (2018) The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46:282-288.56. Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30:2068-2069.57. Sierra A. (2018). Análisis de la diversidad y el potencial bioactivo de bacterias asociadas a líquenes de páramo en el parque nacional natural Chingaza (Tesis de pregrado no publicada) Universidad industrial de Santander.58. Sierra M, Danko D, Sandoval T, Pishchany G, Moncada B, Kolter R y Zambrano M M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Front. Microbiol. 11: 398.59. Sripairoj P, Suwanborirux K y Tanasupawat S. (2013). Characterization and antimicrobial activity of Amycolatopsis strains isolated from Thai soils. J. of Applied Pharmaceutical Science, 3: 011-016.29. Jiang J, He X, Cane D. (2007). Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol. 3: 711-5.60. Somerville W, Thibert L, Schwartzman K, Behr M. (1997). Extraction of Mycobacterium tuberculosis DNA: a question of Containment. J. Clin. Microbiol. 43: 2996-2997.61. Vargas M-N, Triana J, Diaz-Puentes N, Gómez V, Romero C, Villabona N, Cruz M, Corrales A, Chaib M, Del Portillo P, Zambrano M. (2022). Potencial funcional y genómico en Actinobacterias de ecosistemas tropicales. Poster presentado en: VI congreso colombiano de biología computacional y bioinformática: 28 de marzo al 1 abril de 2022. Cartagena. Colombia.62. Vaser R, Sović I, Nagarajan N y Šikić M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome research, 27: 737–746.63. Villalobos A, Wiese J, Imhoff J, Dorador C, Keller A, Hentschel U. (2019). Systematic Affiliation and Genome Analysis of Subtercola vilae DB165T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake. Microorganisms. 23: 7-107.64. Walker B, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. (2014) Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 9: e112963.65. Webber M y Piddock J. (2003). La importancia de las bombas de expulsión en la resistencia bacteriana a los antibióticos. Revista de quimioterapia antimicrobiana. 51: 9–11.66. Wick R, Judd L, Gorrie C, Holt K. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 13: e1005595.67. Wick R, Judd L. y Holt E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20: 1-10.68. Woo P, Lau S, Huang Y, Yuen K-Y. (2005). Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Med Hyp. 67: 1297–1304.69. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson D. (2012). Iron chelators for the treatment of cancer. Curr Med Chem. 19: 2689-70270. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K. (2005). Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology (Reading). 151: 2899-2905.71. Yong-pil K, Hiroshi T, Kousuke I, Takashi F, Atsuko M, Yoko T y Satoshi O.(2003). Akanawaenes, Novel antifungal antibiotics produced by Streptomyces sp. J. Antibiot. 56:5218.72. Zhou X, Huang H, Li J, Song Y, Jiang R, Liu J, Ju J, et al. (2014). New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii. Tetrahedron. 70: 7795-7801.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURActinobacterias de ambientes tropicalesActividad antimicrobianaEcosistemas de páramo de ColombiaAdaptaciones microbianasAnálisis microbianosAntibacterialesMicrobiología576600Actinobacteria from tropical environmentsAntimicrobial activityParamo Ecosystems of ColombiaMicrobial adaptationsMicrobial analysisAntibacterialGenómica y caracterización in vitro de actinobacterias de ambientes tropicales revela su potencial bioactivoGenomics and in vitro characterization of actinobacteria from tropical environments reveals their bioactive potentialbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/9494950c-a52b-4b12-9340-88a328e7d709/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52ORIGINALVargasFlorez_MariaNathalia_2022.pdfVargasFlorez_MariaNathalia_2022.pdfTesis de maestriaapplication/pdf2549308https://repository.urosario.edu.co/bitstreams/b25e963a-8c30-499c-87ec-c42e70ef255c/download4bbc2bea90ac65e4b63a3ac87136e3d9MD51TEXTVargasFlorez_MariaNathalia_2022.pdf.txtVargasFlorez_MariaNathalia_2022.pdf.txtExtracted texttext/plain102403https://repository.urosario.edu.co/bitstreams/3c5ef4bd-db58-4fdb-80df-2ec0bd6b5245/download3485e6bda1ce453c6d7946e3f40de47bMD53THUMBNAILVargasFlorez_MariaNathalia_2022.pdf.jpgVargasFlorez_MariaNathalia_2022.pdf.jpgGenerated Thumbnailimage/jpeg2480https://repository.urosario.edu.co/bitstreams/fb5c3b35-7385-45e8-aa97-016a1c9ffc6b/downloadaa27e2134bb361db3828ddca61aa2938MD5410336/34793oai:repository.urosario.edu.co:10336/347932022-08-30 14:40:02.042068https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |