Occupation time distributions for the telegraph process
For the one-dimensional telegraph process, we obtain explicitly the distribution of the occupation time of the positive half-line. The long-term limiting distribution is then derived when the initial location of the process is in the range of subnormal or normal deviations from the origin; in the fo...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/18749
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/18749
- Palabra clave:
- Arcsine Law
Feynmankac Formula
Laplace Transform
Telegraph Equation
Telegraph Process
Weak Convergence
Arcsine Law
Feynman-Kac Formula
Functionals
Half-Line
Limit Theorem
Limiting Distributions
Occupation Time
Telegraph Equation
Weak Convergence
Employment
Laplace Transforms
Telegraph
Funciones armónicas
Transformaciones (Matemáticas)
Transformaciones de Laplace
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_982ae8f6a06eb620b44024576a552178 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/18749 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
f353b8e6-4155-439f-9e4c-5edc7a8865716003203526002018-11-28T18:28:21Z2018-11-28T18:28:21Z20112011For the one-dimensional telegraph process, we obtain explicitly the distribution of the occupation time of the positive half-line. The long-term limiting distribution is then derived when the initial location of the process is in the range of subnormal or normal deviations from the origin; in the former case, the limit is given by the arcsine law. These limit theorems are also extended to the case of more general occupation-type functionals. © 2011 Elsevier B.V. All rights reserved.application/pdfISSN 0304-4149http://repository.urosario.edu.co/handle/10336/18749eng1844No. 81816Stochastic Processes and their ApplicationsVol. 121Stochastic Processes and their Applications, ISSN: 0304-4149, Vol. 121/No. 8 (2011) pp. 1816-1844https://www.sciencedirect.com/science/article/pii/S0304414911000755/pdfft?md5=30950380d17709846dd498e49745025b&pid=1-s2.0-S0304414911000755-main.pdfAbierto (Texto Completo)https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-licensehttp://purl.org/coar/access_right/c_abf2Abramowitz, M., Stegun, I.A., (1972) Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, , 9th printing Dover New Yorkinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURArcsine LawFeynmankac FormulaLaplace TransformTelegraph EquationTelegraph ProcessWeak ConvergenceArcsine LawFeynman-Kac FormulaFunctionalsHalf-LineLimit TheoremLimiting DistributionsOccupation TimeTelegraph EquationWeak ConvergenceEmploymentLaplace TransformsTelegraphFunciones armónicasTransformaciones (Matemáticas)Transformaciones de LaplaceOccupation time distributions for the telegraph processarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Bogachev, LeonidRatanov, NikitaBogachev, LeonidRatanov, NikitaORIGINAL143.pdfapplication/pdf409807https://repository.urosario.edu.co/bitstreams/b6eff1f3-a7bd-4689-855a-2db504d87f11/downloadd34271d3cf283ec963077bb830d76f19MD51TEXT143.pdf.txt143.pdf.txtExtracted texttext/plain69517https://repository.urosario.edu.co/bitstreams/c7722538-280a-4980-9181-f37ffa8664e0/download3d53554790615b89ee80fdf98be18f1bMD52THUMBNAIL143.pdf.jpg143.pdf.jpgGenerated Thumbnailimage/jpeg4188https://repository.urosario.edu.co/bitstreams/b3d84f34-5002-46a5-af96-6cf2ac0a934a/downloadb64de7e5fa8e67291025e86500a0ace9MD5310336/18749oai:repository.urosario.edu.co:10336/187492019-09-19 07:38:03.190837https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-licensehttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Occupation time distributions for the telegraph process |
title |
Occupation time distributions for the telegraph process |
spellingShingle |
Occupation time distributions for the telegraph process Arcsine Law Feynmankac Formula Laplace Transform Telegraph Equation Telegraph Process Weak Convergence Arcsine Law Feynman-Kac Formula Functionals Half-Line Limit Theorem Limiting Distributions Occupation Time Telegraph Equation Weak Convergence Employment Laplace Transforms Telegraph Funciones armónicas Transformaciones (Matemáticas) Transformaciones de Laplace |
title_short |
Occupation time distributions for the telegraph process |
title_full |
Occupation time distributions for the telegraph process |
title_fullStr |
Occupation time distributions for the telegraph process |
title_full_unstemmed |
Occupation time distributions for the telegraph process |
title_sort |
Occupation time distributions for the telegraph process |
dc.subject.spa.fl_str_mv |
Arcsine Law Feynmankac Formula Laplace Transform Telegraph Equation Telegraph Process Weak Convergence |
topic |
Arcsine Law Feynmankac Formula Laplace Transform Telegraph Equation Telegraph Process Weak Convergence Arcsine Law Feynman-Kac Formula Functionals Half-Line Limit Theorem Limiting Distributions Occupation Time Telegraph Equation Weak Convergence Employment Laplace Transforms Telegraph Funciones armónicas Transformaciones (Matemáticas) Transformaciones de Laplace |
dc.subject.decs.spa.fl_str_mv |
Arcsine Law Feynman-Kac Formula Functionals Half-Line Limit Theorem Limiting Distributions Occupation Time Telegraph Equation Weak Convergence Employment Laplace Transforms Telegraph |
dc.subject.lemb.spa.fl_str_mv |
Funciones armónicas Transformaciones (Matemáticas) Transformaciones de Laplace |
description |
For the one-dimensional telegraph process, we obtain explicitly the distribution of the occupation time of the positive half-line. The long-term limiting distribution is then derived when the initial location of the process is in the range of subnormal or normal deviations from the origin; in the former case, the limit is given by the arcsine law. These limit theorems are also extended to the case of more general occupation-type functionals. © 2011 Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.created.none.fl_str_mv |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.accessioned.none.fl_str_mv |
2018-11-28T18:28:21Z |
dc.date.available.none.fl_str_mv |
2018-11-28T18:28:21Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.issn.none.fl_str_mv |
ISSN 0304-4149 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/18749 |
identifier_str_mv |
ISSN 0304-4149 |
url |
http://repository.urosario.edu.co/handle/10336/18749 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
1844 |
dc.relation.citationIssue.none.fl_str_mv |
No. 8 |
dc.relation.citationStartPage.none.fl_str_mv |
1816 |
dc.relation.citationTitle.none.fl_str_mv |
Stochastic Processes and their Applications |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 121 |
dc.relation.ispartof.spa.fl_str_mv |
Stochastic Processes and their Applications, ISSN: 0304-4149, Vol. 121/No. 8 (2011) pp. 1816-1844 |
dc.relation.uri.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0304414911000755/pdfft?md5=30950380d17709846dd498e49745025b&pid=1-s2.0-S0304414911000755-main.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-license |
rights_invalid_str_mv |
Abierto (Texto Completo) https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-license http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Abramowitz, M., Stegun, I.A., (1972) Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, , 9th printing Dover New York |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/b6eff1f3-a7bd-4689-855a-2db504d87f11/download https://repository.urosario.edu.co/bitstreams/c7722538-280a-4980-9181-f37ffa8664e0/download https://repository.urosario.edu.co/bitstreams/b3d84f34-5002-46a5-af96-6cf2ac0a934a/download |
bitstream.checksum.fl_str_mv |
d34271d3cf283ec963077bb830d76f19 3d53554790615b89ee80fdf98be18f1b b64de7e5fa8e67291025e86500a0ace9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167636014006272 |