A brain-age model for preterm infants based on functional connectivity

In this study, the development of EEG functional connectivity during early development has been investigated in order to provide a predictive age model for premature infants. Approach: The functional connectivity has been assessed via the coherency function (its imaginary part (ImCoh) and its mean s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27309
Acceso en línea:
https://doi.org/10.1088/1361-6579/aabac4
https://repository.urosario.edu.co/handle/10336/27309
Palabra clave:
study
premature infants
functional connectivity
Coherency function
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_9716c6c5d72df45181e40e07935a4771
oai_identifier_str oai:repository.urosario.edu.co:10336/27309
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 141395126000972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-12020-08-19T14:41:42Z2020-08-19T14:41:42Z2018-04-26In this study, the development of EEG functional connectivity during early development has been investigated in order to provide a predictive age model for premature infants. Approach: The functional connectivity has been assessed via the coherency function (its imaginary part (ImCoh) and its mean squared magnitude (MSC)), the phase locking value () and the Hilbert–Schimdt dependence (HSD) in a dataset of 30 patients, partially described and employed in previous studies (Koolen et al 2016 Neuroscience 322 298–307; Lavanga et al 2017 Complexity 2017 1–13). Infants' post-menstrual age (PMA) ranges from 27 to 42 weeks. The topology of the EEG couplings has been investigated via graph-theory indices. Main results: Results show a sharp decrease in ImCoh indices in ?, (4–8) Hz and ?, (8–16) Hz bands and MSC in ?, (16–32) Hz band with maturation, while a more modest positive correlation with PMA is found for HSD, and MSC in , ?, ? bands. The best performances for the PMA prediction were mean absolute error equal to 1.51 weeks and adjusted coefficient of determination equal to 0.8. Significance: The reported findings suggest a segregation of the cortex connectivity, which favours a diffused tasks architecture on the brain scalp. In summary, the results indicate that the neonates' brain development can be described via lagged-interaction network features.application/pdfhttps://doi.org/10.1088/1361-6579/aabac4ISSN: 0967-3334EISSN: 1361-6579https://repository.urosario.edu.co/handle/10336/27309engIOPscienceNo. 4Physiological MeasurementVol. 39Physiological Measurement, ISSN: 0967-3334; EISSN: 1361-6579, Vol.39, No.4 (2018); Art. 044006https://iopscience.iop.org/article/10.1088/1361-6579/aabac4/pdfRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecPhysiological Measurementinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURstudypremature infantsfunctional connectivityCoherency functionA brain-age model for preterm infants based on functional connectivityUn modelo de edad cerebral para bebés prematuros basado en la conectividad funcionalarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderJansen, KDereymaeker, ANaulaers, GVan Huffel, SLavanga, MDe Wel, O10336/27309oai:repository.urosario.edu.co:10336/273092022-05-02 07:37:13.844181https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A brain-age model for preterm infants based on functional connectivity
dc.title.TranslatedTitle.spa.fl_str_mv Un modelo de edad cerebral para bebés prematuros basado en la conectividad funcional
title A brain-age model for preterm infants based on functional connectivity
spellingShingle A brain-age model for preterm infants based on functional connectivity
study
premature infants
functional connectivity
Coherency function
title_short A brain-age model for preterm infants based on functional connectivity
title_full A brain-age model for preterm infants based on functional connectivity
title_fullStr A brain-age model for preterm infants based on functional connectivity
title_full_unstemmed A brain-age model for preterm infants based on functional connectivity
title_sort A brain-age model for preterm infants based on functional connectivity
dc.subject.keyword.spa.fl_str_mv study
premature infants
functional connectivity
Coherency function
topic study
premature infants
functional connectivity
Coherency function
description In this study, the development of EEG functional connectivity during early development has been investigated in order to provide a predictive age model for premature infants. Approach: The functional connectivity has been assessed via the coherency function (its imaginary part (ImCoh) and its mean squared magnitude (MSC)), the phase locking value () and the Hilbert–Schimdt dependence (HSD) in a dataset of 30 patients, partially described and employed in previous studies (Koolen et al 2016 Neuroscience 322 298–307; Lavanga et al 2017 Complexity 2017 1–13). Infants' post-menstrual age (PMA) ranges from 27 to 42 weeks. The topology of the EEG couplings has been investigated via graph-theory indices. Main results: Results show a sharp decrease in ImCoh indices in ?, (4–8) Hz and ?, (8–16) Hz bands and MSC in ?, (16–32) Hz band with maturation, while a more modest positive correlation with PMA is found for HSD, and MSC in , ?, ? bands. The best performances for the PMA prediction were mean absolute error equal to 1.51 weeks and adjusted coefficient of determination equal to 0.8. Significance: The reported findings suggest a segregation of the cortex connectivity, which favours a diffused tasks architecture on the brain scalp. In summary, the results indicate that the neonates' brain development can be described via lagged-interaction network features.
publishDate 2018
dc.date.created.spa.fl_str_mv 2018-04-26
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:41:42Z
dc.date.available.none.fl_str_mv 2020-08-19T14:41:42Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1361-6579/aabac4
dc.identifier.issn.none.fl_str_mv ISSN: 0967-3334
EISSN: 1361-6579
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27309
url https://doi.org/10.1088/1361-6579/aabac4
https://repository.urosario.edu.co/handle/10336/27309
identifier_str_mv ISSN: 0967-3334
EISSN: 1361-6579
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 4
dc.relation.citationTitle.none.fl_str_mv Physiological Measurement
dc.relation.citationVolume.none.fl_str_mv Vol. 39
dc.relation.ispartof.spa.fl_str_mv Physiological Measurement, ISSN: 0967-3334; EISSN: 1361-6579, Vol.39, No.4 (2018); Art. 044006
dc.relation.uri.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/1361-6579/aabac4/pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IOPscience
dc.source.spa.fl_str_mv Physiological Measurement
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167602187993088