Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico
Los algoritmos para tamizaje de glaucoma determinan la presencia o ausencia de enfermedad basados en la relación excavación/disco (Clasificación de Armaly). Sin embargo, se podrían pasar por alto hallazgos sugestivos de daño del nervio óptico clasificándolo incorrectamente. La escala de probabilidad...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/38132
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/38132
- Palabra clave:
- Inteligencia artificial
Oftalmología
Nervio óptico
Glaucoma
Análisis de Fourier
Redes neurales de la computación
Artificial intelligence
Ophthalmology
Optic nerve
Glaucoma
Fourier Analysis
Neural Networks
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_967b1ae7826dbd47c61c57b2ab7c3500 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/38132 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
dc.title.TranslatedTitle.none.fl_str_mv |
Performance of an algorithm for glaucoma diagnosis based on the optic nerve cup/disc ratio |
title |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
spellingShingle |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico Inteligencia artificial Oftalmología Nervio óptico Glaucoma Análisis de Fourier Redes neurales de la computación Artificial intelligence Ophthalmology Optic nerve Glaucoma Fourier Analysis Neural Networks |
title_short |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
title_full |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
title_fullStr |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
title_full_unstemmed |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
title_sort |
Rendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio óptico |
dc.contributor.advisor.none.fl_str_mv |
Belalcázar Rey, Sandra |
dc.subject.none.fl_str_mv |
Inteligencia artificial Oftalmología Nervio óptico Glaucoma Análisis de Fourier Redes neurales de la computación |
topic |
Inteligencia artificial Oftalmología Nervio óptico Glaucoma Análisis de Fourier Redes neurales de la computación Artificial intelligence Ophthalmology Optic nerve Glaucoma Fourier Analysis Neural Networks |
dc.subject.keyword.none.fl_str_mv |
Artificial intelligence Ophthalmology Optic nerve Glaucoma Fourier Analysis Neural Networks |
description |
Los algoritmos para tamizaje de glaucoma determinan la presencia o ausencia de enfermedad basados en la relación excavación/disco (Clasificación de Armaly). Sin embargo, se podrían pasar por alto hallazgos sugestivos de daño del nervio óptico clasificándolo incorrectamente. La escala de probabilidad de daño del disco de Spaeth puede ser útil identificando cambios tempranos de neuropatía óptica glaucomatosa. Objetivo Determinar el rendimiento de un algoritmo para tamizaje de glaucoma analizando fotografías de nervio óptico. Métodos Estudio transversal de prueba diagnóstica. Se diseñó un algoritmo para identificar características sugestivas de daño en imágenes del nervio óptico. Se clasificaron las imágenes según las escalas de Armaly y Spaeth. El algoritmo segmenta el nervio y la excavación mediante análisis de tono, saturación e iluminación; extrae los contornos con el método de Otsu de múltiples umbrales y cada contorno es representado mediante series de Fourier, alimentando una red neuronal de dos capas. Resultados La concordancia del algoritmo con el criterio del especialista fue de 80% (p menor a 0.05) para determinar la relación excavación/disco, 91% (p menor a 0.05) para la escala DDLS de Spaeth, 92% (p menor a 0.05) para la escala DDLS de Spaeth modificada, y de 99% (p menor a 0.05) para la clasificación de severidad de daño por glaucoma. El criterio de los dos especialistas coincidió en 94% (p menor a 0.05) para la clasificación de severidad de daño por glaucoma, 40% para la relación excavación/disco, en 12,4% para la escala DDLS de Spaeth y en 12,5% para la escala DDLS de Spaeth modificada. Conclusiones Se propone un algoritmo de inteligencia artifical basado en una red neuronal de 2 capas que alcanza alta precisión en resultados preliminares para clasificar riesgo de glaucoma usando las escalas de Armaly, DDLS de Spaeth y la clasificación de severidad de daño por glaucoma |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-22T21:28:19Z |
dc.date.available.none.fl_str_mv |
2023-02-22T21:28:19Z |
dc.date.created.none.fl_str_mv |
2023-02-17 |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2025-02-21 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/38132 |
url |
https://repository.urosario.edu.co/handle/10336/38132 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.none.fl_str_mv |
Restringido (Temporalmente bloqueado) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Restringido (Temporalmente bloqueado) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
41 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.none.fl_str_mv |
Especialización en Oftalmología |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Zheng C, Johnson T v., Garg A, Boland M v. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019;47(1):128–39. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology. 2019;103(2):167–75. Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol [Internet]. noviembre de 2008;53 Suppl1:S3-10. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19038621 FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems [Internet]. 2018. Disponible en: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism [Internet]. 2017;69:S36–40. Disponible en: http://dx.doi.org/10.1016/j.metabol.2017.01.011 Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli M v, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. septiembre de 2017;5(9):e888–97. Du XL, Li WB, Hu BJ. Application of artificial intelligence in ophthalmology. Int J Ophthalmol. 2018;11(9):1555–61. Park I, Gale J, Skalicky SE. Health Economic Analysis in Glaucoma. J Glaucoma [Internet]. abril de 2020;29(4):304–11. Disponible en: https://journals.lww.com/10.1097/IJG.0000000000001462 Liu H, Li L, Wormstone IM, Qiao C, Zhang C, Liu P, et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019;137(12):1353–60. Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T, Hasegawa T, et al. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 2019;63(3):276–83. Smits DJ, Elze T, Wang H, Pasquale LR. Machine Learning in the Detection of the Glaucomatous Disc and Visual Field. Semin Ophthalmol [Internet]. 2019;34(4):232–42. Disponible en: https://doi.org/10.1080/08820538.2019.1620801 Biggerstaff KS, Lin A. Glaucoma and Quality of Life. Int Ophthalmol Clin. 2018;58(3):11–22. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology [Internet]. 2014;121(11):2081–90. Disponible en: http://dx.doi.org/10.1016/j.ophtha.2014.05.013 Rivera CE, Cantor E, Castillo A, Martinez A, Newball L, Rueda JC, et al. Prevalence of Primary Open Angle Glaucoma among Patients with Diagnosis of Systemic Hypertension and Diabetes Mellitus: The Colombian Glaucoma Study. Open J Ophthalmol. 2020;10(02):99–114. Wurster P, Harris A, Gonzalez AC, Adjei S, Verticchio Vercellin A, Mathew S, et al. Risk factors for open-Angle glaucoma in persons of latin american descent. J Glaucoma. 2020;29(3):217–25. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. British Journal of Ophthalmology. mayo de 2012;96(5):614–8. Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. marzo de 2006;90(3):262–7. Kapetanakis V v, Chan MPY, Foster PJ, Cook DG, Owen CG, Rudnicka AR. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. British Journal of Ophthalmology. enero de 2016;100(1):86–93. FB VB, J JR. Guía latinoamericana de glaucoma primario de ángulo abierto. 2019. 1–93 p. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol [Internet]. el 1 de junio de 2002;120(6):714–20; discussion 829-30. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.120.6.714 Ladapo JA. Projected Clinical Outcomes of Glaucoma Screening in African American Individuals. Archives of Ophthalmology [Internet]. el 1 de marzo de 2012;130(3):365. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopthalmol.2011.1224 Foster PJ. The definition and classification of glaucoma in prevalence surveys. British Journal of Ophthalmology [Internet]. el 1 de febrero de 2002;86(2):238–42. Disponible en: https://bjo.bmj.com/lookup/doi/10.1136/bjo.86.2.238 Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye / Guide factuel de pratique clinique de la Société canadienne d’ophtalmologie pour la gestion du glaucome chez l’adulte. Canadian Journal of Ophthalmology [Internet]. 2009;44(S1):S1–93. Disponible en: http://article.pubs.nrc-cnrc.gc.ca/RPAS/rpv?hm=HInit&calyLang=eng&journal=cjo&volume=44&afpf=cjo44s1.pdf Armaly MF. The Cup/Disc Ratio. Archives of Ophthalmology [Internet]. el 1 de agosto de 1969;82(2):191. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.1969.00990020193008 Spaeth GL, Henderer J, Liu C, Kesen M, Altangerel U, Bayer A, et al. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Trans Am Ophthalmol Soc [Internet]. 2002;100:181–5; discussion 185-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12545692 Kara-José AC, Melo LAS, Esporcatte BLB, Endo ATNH, Leite MT, Tavares IM. The disc damage likelihood scale: Diagnostic accuracy and correlations with cup-to-disc ratio, structural tests and standard automated perimetry. Acott TS, editor. PLoS One [Internet]. el 20 de julio de 2017;12(7):e0181428. Disponible en: https://dx.plos.org/10.1371/journal.pone.0181428 Pahlitzsch M, Torun N, Erb C, Bruenner J, Maier AK, Gonnermann J, et al. Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma. Clinical Ophthalmology [Internet]. noviembre de 2015;2147. Disponible en: https://www.dovepress.com/significance-of-the-disc-damage-likelihood-scale-objectively-measured--peer-reviewed-article-OPTH Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Applications of Artificial Intelligence in Ophthalmology: General Overview. J Ophthalmol [Internet]. el 19 de noviembre de 2018;2018:1–15. Disponible en: https://www.hindawi.com/journals/joph/2018/5278196/ Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature [Internet]. el 2 de febrero de 2017;542(7639):115–8. Disponible en: http://www.nature.com/articles/nature21056 Bejnordi BE, Zuidhof G, Balkenhol M, Hermsen M, Bult P, van Ginneken B, et al. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging [Internet]. el 14 de diciembre de 2017;4(04):1. Disponible en: https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-4/issue-04/044504/Context-aware-stacked-convolutional-neural-networks-for-classification-of-breast/10.1117/1.JMI.4.4.044504.full Cerentini A, Welfer D, d’Ornellas MC, Haygert CJP, Dotto GN. Automatic identification of glaucoma using deep learning methods. Stud Health Technol Inform. 2017;245:318–21. Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics [Internet]. 2017;55:28–41. Disponible en: http://dx.doi.org/10.1016/j.compmedimag.2016.07.012 Park SJ, Shin JY, Kim S, Son J, Jung KH, Park KH. A novel fundus image reading tool for efficient generation of a multi-dimensional categorical image database for machine learning algorithm training. J Korean Med Sci. 2018;33(43):1–12. Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. CNNs for automatic glaucoma assessment using fundus images: An extensive validation. Biomed Eng Online [Internet]. 2019;18(1):1–19. Disponible en: https://doi.org/10.1186/s12938-019-0649-y Chaurasia AK, Greatbatch CJ, Hewitt AW. Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice. J Glaucoma. mayo de 2022;31(5):285–99. Ittoop SM, Jaccard N, Lanouette G, Kahook MY. The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma. J Glaucoma. marzo de 2022;31(3):137–46. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. el 10 de diciembre de 2003;3(1):25. Resolución número 8430 de 1993, Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Colombia: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF; 1993. Agoston MK. Computer Graphics and Geometric Modeling [Internet]. London: Springer-Verlag; 2005. 908 p. Disponible en: http://link.springer.com/10.1007/b138805 Lehmann G. Kappa Sigma Clipping. Insight J. 2006;July-Decem. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9c774ed9-2055-410c-9a24-b7e3c2ea4f43/download https://repository.urosario.edu.co/bitstreams/18d52604-a3a4-4b47-b980-9757049cf2bd/download https://repository.urosario.edu.co/bitstreams/4e772f8f-09e4-4732-bd73-1ab26b7584aa/download https://repository.urosario.edu.co/bitstreams/e64c77a3-99f5-4982-9c34-e8b32229c15c/download https://repository.urosario.edu.co/bitstreams/ecef0f68-42f4-471b-a24c-48372b215af4/download |
bitstream.checksum.fl_str_mv |
b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 8a395e1eb130115410de0602d61de717 e1fc81b7f989d156276ff07a9dff2c62 2674a72279063c5bf3ffaf4813a49752 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106596764418048 |
spelling |
Belalcázar Rey, Sandra24c31e13-24f8-4f7c-a774-eab159e077b0-1Belalcázar Rey, SandraSuárez Garavito, Jaime AndrésMartínez Ceballos, María AlejandraCarvajal, Claudia RosaFlórez Valencia, LeonardoEspecialista en OftalmologíaMaestríaFull timed6372d66-7922-4e67-8ef8-be242d72d66c-19b300d40-e237-49cc-9e12-9bc41edf14d8-1188306aa-5272-4365-915a-10ad1fb62909-1a7684778-c427-445a-bd0f-3635f94046f6-19e9f3aba-4a53-4033-8ab1-366121bc3953-12023-02-22T21:28:19Z2023-02-22T21:28:19Z2023-02-17info:eu-repo/date/embargoEnd/2025-02-21Los algoritmos para tamizaje de glaucoma determinan la presencia o ausencia de enfermedad basados en la relación excavación/disco (Clasificación de Armaly). Sin embargo, se podrían pasar por alto hallazgos sugestivos de daño del nervio óptico clasificándolo incorrectamente. La escala de probabilidad de daño del disco de Spaeth puede ser útil identificando cambios tempranos de neuropatía óptica glaucomatosa. Objetivo Determinar el rendimiento de un algoritmo para tamizaje de glaucoma analizando fotografías de nervio óptico. Métodos Estudio transversal de prueba diagnóstica. Se diseñó un algoritmo para identificar características sugestivas de daño en imágenes del nervio óptico. Se clasificaron las imágenes según las escalas de Armaly y Spaeth. El algoritmo segmenta el nervio y la excavación mediante análisis de tono, saturación e iluminación; extrae los contornos con el método de Otsu de múltiples umbrales y cada contorno es representado mediante series de Fourier, alimentando una red neuronal de dos capas. Resultados La concordancia del algoritmo con el criterio del especialista fue de 80% (p menor a 0.05) para determinar la relación excavación/disco, 91% (p menor a 0.05) para la escala DDLS de Spaeth, 92% (p menor a 0.05) para la escala DDLS de Spaeth modificada, y de 99% (p menor a 0.05) para la clasificación de severidad de daño por glaucoma. El criterio de los dos especialistas coincidió en 94% (p menor a 0.05) para la clasificación de severidad de daño por glaucoma, 40% para la relación excavación/disco, en 12,4% para la escala DDLS de Spaeth y en 12,5% para la escala DDLS de Spaeth modificada. Conclusiones Se propone un algoritmo de inteligencia artifical basado en una red neuronal de 2 capas que alcanza alta precisión en resultados preliminares para clasificar riesgo de glaucoma usando las escalas de Armaly, DDLS de Spaeth y la clasificación de severidad de daño por glaucomaGlaucoma screening algorithms determine the presence or absence of disease based on the cup/disc ratio (Armaly’s classification). However, findings suggestive of optic nerve damage may be missed and misclassified as healthy in affected eyes. Spaeth’s Disc Damage Likelihood Scale helps to identify early changes of glaucomatous optic neuropathy. Objective To determine the performance of an algorithm for glaucoma screening based on Armaly’s classification and Spaeth’s Disc Damage Likelihood Scale by analyzing optic nerve images. Methods Cross-sectional diagnostic test study. An algorithm was designed to identify findings suggestive of optic nerve damage and not only the presence or absence of glaucoma. Optic nerve photos were classified using Armaly’s classification and Spaeth’s scale. The algorithm segments the optic nerve and cup by analyzing hue, saturation, and lighting values, then extracts contours using Otsu’s method with multiple thresholds. Each contour is represented using Fourier series. All the information feeds a two-layer neural network. Results The agreement of the algorithm with the specialist's criteria was 80% (p less than 0.05) for determining the cup/disc ratio, 91% (p less than 0.05) for Spaeth’s Disc Damage Likelihood Scale (DDLS), 92% (p less than 0.05) Spaeth’s modified DDLS and 99% (p less than 0.05) for the glaucoma damage classification. The agreement between the two specialists was 94% (p less than 0.05) for the glaucoma damage classification, 40% for the excavation/disc ratio, 12,4% for Spaeth’s DDLS and 12.5% for Spaeth’s modified DDLS. Conclusions We propose an algorithm based on a 2-layer neural network that in preliminary results achieves high accuracy to estimate glaucoma risk based on Armaly’s classification, Spaeth’ original and modified DDLS scales and glaucoma damage classification.41 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/38132spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludEspecialización en OftalmologíaAttribution-NonCommercial-NoDerivatives 4.0 InternationalRestringido (Temporalmente bloqueado)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_f1cfZheng C, Johnson T v., Garg A, Boland M v. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103.Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019;47(1):128–39.Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology. 2019;103(2):167–75.Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol [Internet]. noviembre de 2008;53 Suppl1:S3-10. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19038621FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems [Internet]. 2018. Disponible en: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eyeHamet P, Tremblay J. Artificial intelligence in medicine. Metabolism [Internet]. 2017;69:S36–40. Disponible en: http://dx.doi.org/10.1016/j.metabol.2017.01.011Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli M v, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. septiembre de 2017;5(9):e888–97.Du XL, Li WB, Hu BJ. Application of artificial intelligence in ophthalmology. Int J Ophthalmol. 2018;11(9):1555–61.Park I, Gale J, Skalicky SE. Health Economic Analysis in Glaucoma. J Glaucoma [Internet]. abril de 2020;29(4):304–11. Disponible en: https://journals.lww.com/10.1097/IJG.0000000000001462Liu H, Li L, Wormstone IM, Qiao C, Zhang C, Liu P, et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019;137(12):1353–60.Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T, Hasegawa T, et al. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 2019;63(3):276–83.Smits DJ, Elze T, Wang H, Pasquale LR. Machine Learning in the Detection of the Glaucomatous Disc and Visual Field. Semin Ophthalmol [Internet]. 2019;34(4):232–42. Disponible en: https://doi.org/10.1080/08820538.2019.1620801Biggerstaff KS, Lin A. Glaucoma and Quality of Life. Int Ophthalmol Clin. 2018;58(3):11–22.Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology [Internet]. 2014;121(11):2081–90. Disponible en: http://dx.doi.org/10.1016/j.ophtha.2014.05.013Rivera CE, Cantor E, Castillo A, Martinez A, Newball L, Rueda JC, et al. Prevalence of Primary Open Angle Glaucoma among Patients with Diagnosis of Systemic Hypertension and Diabetes Mellitus: The Colombian Glaucoma Study. Open J Ophthalmol. 2020;10(02):99–114.Wurster P, Harris A, Gonzalez AC, Adjei S, Verticchio Vercellin A, Mathew S, et al. Risk factors for open-Angle glaucoma in persons of latin american descent. J Glaucoma. 2020;29(3):217–25.Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. British Journal of Ophthalmology. mayo de 2012;96(5):614–8.Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. marzo de 2006;90(3):262–7.Kapetanakis V v, Chan MPY, Foster PJ, Cook DG, Owen CG, Rudnicka AR. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. British Journal of Ophthalmology. enero de 2016;100(1):86–93.FB VB, J JR. Guía latinoamericana de glaucoma primario de ángulo abierto. 2019. 1–93 p.Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol [Internet]. el 1 de junio de 2002;120(6):714–20; discussion 829-30. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.120.6.714Ladapo JA. Projected Clinical Outcomes of Glaucoma Screening in African American Individuals. Archives of Ophthalmology [Internet]. el 1 de marzo de 2012;130(3):365. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopthalmol.2011.1224Foster PJ. The definition and classification of glaucoma in prevalence surveys. British Journal of Ophthalmology [Internet]. el 1 de febrero de 2002;86(2):238–42. Disponible en: https://bjo.bmj.com/lookup/doi/10.1136/bjo.86.2.238Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye / Guide factuel de pratique clinique de la Société canadienne d’ophtalmologie pour la gestion du glaucome chez l’adulte. Canadian Journal of Ophthalmology [Internet]. 2009;44(S1):S1–93. Disponible en: http://article.pubs.nrc-cnrc.gc.ca/RPAS/rpv?hm=HInit&calyLang=eng&journal=cjo&volume=44&afpf=cjo44s1.pdfArmaly MF. The Cup/Disc Ratio. Archives of Ophthalmology [Internet]. el 1 de agosto de 1969;82(2):191. Disponible en: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.1969.00990020193008Spaeth GL, Henderer J, Liu C, Kesen M, Altangerel U, Bayer A, et al. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Trans Am Ophthalmol Soc [Internet]. 2002;100:181–5; discussion 185-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12545692Kara-José AC, Melo LAS, Esporcatte BLB, Endo ATNH, Leite MT, Tavares IM. The disc damage likelihood scale: Diagnostic accuracy and correlations with cup-to-disc ratio, structural tests and standard automated perimetry. Acott TS, editor. PLoS One [Internet]. el 20 de julio de 2017;12(7):e0181428. Disponible en: https://dx.plos.org/10.1371/journal.pone.0181428Pahlitzsch M, Torun N, Erb C, Bruenner J, Maier AK, Gonnermann J, et al. Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma. Clinical Ophthalmology [Internet]. noviembre de 2015;2147. Disponible en: https://www.dovepress.com/significance-of-the-disc-damage-likelihood-scale-objectively-measured--peer-reviewed-article-OPTHLu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Applications of Artificial Intelligence in Ophthalmology: General Overview. J Ophthalmol [Internet]. el 19 de noviembre de 2018;2018:1–15. Disponible en: https://www.hindawi.com/journals/joph/2018/5278196/Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature [Internet]. el 2 de febrero de 2017;542(7639):115–8. Disponible en: http://www.nature.com/articles/nature21056Bejnordi BE, Zuidhof G, Balkenhol M, Hermsen M, Bult P, van Ginneken B, et al. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging [Internet]. el 14 de diciembre de 2017;4(04):1. Disponible en: https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-4/issue-04/044504/Context-aware-stacked-convolutional-neural-networks-for-classification-of-breast/10.1117/1.JMI.4.4.044504.fullCerentini A, Welfer D, d’Ornellas MC, Haygert CJP, Dotto GN. Automatic identification of glaucoma using deep learning methods. Stud Health Technol Inform. 2017;245:318–21.Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics [Internet]. 2017;55:28–41. Disponible en: http://dx.doi.org/10.1016/j.compmedimag.2016.07.012Park SJ, Shin JY, Kim S, Son J, Jung KH, Park KH. A novel fundus image reading tool for efficient generation of a multi-dimensional categorical image database for machine learning algorithm training. J Korean Med Sci. 2018;33(43):1–12.Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. CNNs for automatic glaucoma assessment using fundus images: An extensive validation. Biomed Eng Online [Internet]. 2019;18(1):1–19. Disponible en: https://doi.org/10.1186/s12938-019-0649-yChaurasia AK, Greatbatch CJ, Hewitt AW. Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice. J Glaucoma. mayo de 2022;31(5):285–99.Ittoop SM, Jaccard N, Lanouette G, Kahook MY. The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma. J Glaucoma. marzo de 2022;31(3):137–46.Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. el 10 de diciembre de 2003;3(1):25.Resolución número 8430 de 1993, Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Colombia: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF; 1993.Agoston MK. Computer Graphics and Geometric Modeling [Internet]. London: Springer-Verlag; 2005. 908 p. Disponible en: http://link.springer.com/10.1007/b138805Lehmann G. Kappa Sigma Clipping. Insight J. 2006;July-Decem.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURInteligencia artificialOftalmologíaNervio ópticoGlaucomaAnálisis de FourierRedes neurales de la computaciónArtificial intelligenceOphthalmologyOptic nerveGlaucomaFourier AnalysisNeural NetworksRendimiento de un algoritmo para el diagnóstico de glaucoma basado en la relación excavación/disco del nervio ópticoPerformance of an algorithm for glaucoma diagnosis based on the optic nerve cup/disc ratiobachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludLICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/9c774ed9-2055-410c-9a24-b7e3c2ea4f43/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/18d52604-a3a4-4b47-b980-9757049cf2bd/download3b6ce8e9e36c89875e8cf39962fe8920MD52ORIGINALRendimiento-de-un-algoritmo-para.pdfRendimiento-de-un-algoritmo-para.pdfapplication/pdf3223719https://repository.urosario.edu.co/bitstreams/4e772f8f-09e4-4732-bd73-1ab26b7584aa/download8a395e1eb130115410de0602d61de717MD53TEXTRendimiento-de-un-algoritmo-para.pdf.txtRendimiento-de-un-algoritmo-para.pdf.txtExtracted texttext/plain77569https://repository.urosario.edu.co/bitstreams/e64c77a3-99f5-4982-9c34-e8b32229c15c/downloade1fc81b7f989d156276ff07a9dff2c62MD54THUMBNAILRendimiento-de-un-algoritmo-para.pdf.jpgRendimiento-de-un-algoritmo-para.pdf.jpgGenerated Thumbnailimage/jpeg2330https://repository.urosario.edu.co/bitstreams/ecef0f68-42f4-471b-a24c-48372b215af4/download2674a72279063c5bf3ffaf4813a49752MD5510336/38132oai:repository.urosario.edu.co:10336/381322023-06-07 10:04:52.738http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |