Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera

Las variaciones en el tamaño corporal representan un motor para la colonización de nuevos nichos representado en patrones ecogeográficos. La ley de Bergmann describe un patrón ecogeográfico donde las especies con mayor tamaño corporal se distribuyen a mayor latitud. No obstante, la ley de Bergmann s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/28206
Acceso en línea:
https://doi.org/10.48713/10336_28206
https://repository.urosario.edu.co/handle/10336/28206
Palabra clave:
Morfometría
Ecología sensorial
Sensilas placodeas
Ley de Bergmann
Altitud
Tamaño
Invertebrados
Morphometry
Sensory ecology
Sensilla placodea
Bergmann's law
Altitude
Size
Rights
License
Abierto (Texto Completo)
id EDOCUR2_94b21748d38d9d872bc9454978f40fff
oai_identifier_str oai:repository.urosario.edu.co:10336/28206
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
dc.title.TranslatedTitle.eng.fl_str_mv Effects of elevation on sensory allometry in the honey bee, Apis mellifera
title Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
spellingShingle Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
Morfometría
Ecología sensorial
Sensilas placodeas
Ley de Bergmann
Altitud
Tamaño
Invertebrados
Morphometry
Sensory ecology
Sensilla placodea
Bergmann's law
Altitude
Size
title_short Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
title_full Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
title_fullStr Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
title_full_unstemmed Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
title_sort Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera
dc.contributor.advisor.none.fl_str_mv Riveros Rivera, Andre Josafat
dc.contributor.none.fl_str_mv Herrera Gutiérrez, Laura Maria
Orjuela, Rafael
dc.subject.spa.fl_str_mv Morfometría
Ecología sensorial
Sensilas placodeas
Ley de Bergmann
Altitud
Tamaño
topic Morfometría
Ecología sensorial
Sensilas placodeas
Ley de Bergmann
Altitud
Tamaño
Invertebrados
Morphometry
Sensory ecology
Sensilla placodea
Bergmann's law
Altitude
Size
dc.subject.ddc.spa.fl_str_mv Invertebrados
dc.subject.keyword.spa.fl_str_mv Morphometry
Sensory ecology
Sensilla placodea
Bergmann's law
Altitude
Size
description Las variaciones en el tamaño corporal representan un motor para la colonización de nuevos nichos representado en patrones ecogeográficos. La ley de Bergmann describe un patrón ecogeográfico donde las especies con mayor tamaño corporal se distribuyen a mayor latitud. No obstante, la ley de Bergmann sensu lato incluye factores abióticos como temperatura y altitud. En consecuencia, la ley de Bergmann sensu lato extiende el patrón modificado a distintos grupos que antes no se habían incluido, como en el caso de la Clase Insecta. Se sabe que las variaciones en el tamaño corporal de los insectos influyen en las dinámicas de forrajeo. Por lo tanto, la información ambiental que perciben y procesan los insectos varía con cambios en el tamaño corporal absoluto y relativo. En este estudio se evaluó la ley de Bergmann sensu lato aplicada en A. mellifera con respecto a una clina altitudinal en dos zonas de la cordillera oriental colombiana; evaluando variaciones de rasgos morfométricos y sensoriales, además de su relación con la percepción de la información olfativa y sus consecuencias en las actividades de forrajeo. Se encontró que las abejas de menor elevación presentaron menor magnitud para rasgos sensoriales y morfométricos a diferencia de las abejas que se distribuyen en la localidad con mayor elevación. Este patrón responde al principio de la ley de Bergmann sensu lato en función de una clina altitudinal. Las variaciones alométricas a nivel morfométrico registradas en el estudio tienen efecto en los rasgos sensoriales de A. mellifera. En consecuencia, se puede sugerir como la temperatura asociada a la altitud moldea las comunidades de A. mellifera, específicamente en tareas de polinización.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-20T21:39:02Z
dc.date.available.none.fl_str_mv 2020-08-20T21:39:02Z
dc.date.created.none.fl_str_mv 2020-08-12
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Artículo
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_28206
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28206
url https://doi.org/10.48713/10336_28206
https://repository.urosario.edu.co/handle/10336/28206
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Biología
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Abel, R., Rybak, J., & Menzel, R. (2001). Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. Journal of Comparative Neurology, 437(3), 363-383
Alloway TM. 1972. Learning and memory in insects. Annu. Rev. Entomol. 17:43–56
Apfelbach R, Russ D, Slotnick BM (1991) Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chem Sens 16:209–218
Ashman, T. L., & Stanton, M. (1991). Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology, 72(3), 993-1003
Bidau, C. J., & Martí, D. A. (2007). Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): inversion of Bergmann's and Rensch's rules. Annals of the Entomological Society of America, 100(6), 850-860
Blackburn, T. M. et al. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. Div. Distr. 5: 165–174.
Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum?. Integrative and Comparative Biology, 44(6), 413-424.
Buchmann CM, Schurr FM, Nathan R, Jeltsch F. Habitat loss and fragmentation affecting mammal and bird communities—The role of interspecific competition and individual space use. Ecological Informatics. 2013; 14:90–8
Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361-377.
Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8(3), 224-228.
Domic, A. I., & Capriles, J. M. (2009). Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant ecology, 205(2), 223-234.
Dudley R (2001) The biomechanics and functional diversity of flight. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, Cambridge
Elekonich, M. M., & Roberts, S. P. (2005). Honey bees as a model for understanding mechanisms of life history transitions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 141(4), 362-371.
Faber T, Menzel R. (2001). Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften 88:472–76.
Farris, S. M., Robinson, G. E., Davis, R. L., & Fahrbach, S. E. (1999). Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. Journal of Comparative Neurology, 414(1), 97-113.
Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F., & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural brain research, 209(2), 221-225.
Galizia CG, Menzel R. (2000). Odour perception in honeybees: Coding information in glomerular patterns. Curr Op Neurobiol 10:504–510.
Greenfield M (2002) Signalers and receivers. Oxford University Press. Oxford
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology letters, 12(2), 184-195.
Heinrich, B. (1993). The Hot Blooded Insects. Harvard University Press, Cambridge.
Homberg, U. (1984). Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6), 825-836.
Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Structure and Development. 30: 179-193
Jeanson, R., Clark, R. M., Holbrook, C. T., Bertram, S. M., Fewell, J. H., & Kukuk, P. F. (2008). Division of labour and socially induced changes in response thresholds in associations of solitary halictine bees. Animal Behaviour, 76(3), 593-602.
Jin, Y. et al. 2007. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai‐Xizang (Tibetan) Plateau. Belg. J. Zool. 137: 197–202.
Kaissling, K. E., & Renner, M. (1968). Specialized chemoreceptors in the pore plates of. Apis. Z. Vergl. Physiol, 59, 357-361.
Kelber C, Rössler W, Kleineidam CJ. (2006). Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 496:395–405
Ken, T., Fuchs, S., Koeniger, N., & Ruiguang, Z. (2003). Morphological characterization of Apis cerana in the Yunnan Province of China. Apidologie, 34(6), 553-561.
Klingenberg, C. P., Badyaev, A. V., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. The American Naturalist, 157(1), 11-23).
Levinton, J.1988. Genetics, paleontology and macroevolution. Cambridge University Press, Cambridge
Liu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68:164–174
Malo, J. y Baonza, J. 2002. Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) Link in the Sierra de Guadarrama (Central Spain). Diversity and Distributions 8, 365–371
Mattu, V. K., & Verma, L. R. (1983). Comparative morphometric studies on the Indian honeybee of the north-west Himalayas 1. Tongue and antenna. Journal of Apicultural Research, 22(2), 79-85.
Mayr, E. 1956. Geographical character gradients and climatic adaptation. Evolution 10: 105–108.
McNab, B. K. 1971. On the ecological significance of Bergmann's rule. Ecology 52: 845–854.
Meiri, S. et al. 2007. What determines conformity to Bergmann's rule?. Global Ecol. Biogeogr. 16: 788–794
Menzel R. 1990. Learning, memory and “cognition” in honey bees. In: Kesner RP, Olten DS, editors. Neurobiology of comparative cognition. Hillsdale, NJ: Erlbaum Inc. p 237–292
Nijhout, H. F. (2003). The control of body size in insects. Developmental biology, 261(1), 1-9.
Olalla-Tarraga, M.A. (2011). ‘Nullius in Bergmann’ or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 120, 1441–1444
Osorio‐Canadas, S., Arnan, X., Rodrigo, A., Torné‐Noguera, A., Molowny, R., & Bosch, J. (2016). Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule. Ecology Letters, 19(12), 1395-1402.
Page R.E. Jr., Erber J., Fondrk M.K. (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees ( Apis mellifera L.), J. Comp. Physiol. A 182, 489–500.
Peters, M.K., Peisker, J., Steffan-Dewenter, I. & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. J. Biogeogr., doi:10.1111/jbi.12768.
Reinhard, J., & Srinivasan, M. V. (2009). The role of scents in honey bee foraging and recruitment. Food exploitation by social insects: ecological, behavioral, and theoretical approaches, 1, 165-182.
Riveros, A. J., & Gronenberg, W. (2010). Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behavioral ecology and sociobiology, 64(6), 955-966.
Robertson, F.W., 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44, 869–896
Schlichting, C. D. and Piggliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Mass: Sinauer Associates.
Schwarz, S., Albert, L., Wystrach, A., & Cheng, K. (2011). Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology, 214(6), 901-906.
Searcy, W. A. 1980. Optimum body sizes at different ambient temperatures: an energetics explanation of Bergmann's rule. J. Theor. Biol. 83: 579–593.
Shelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist, 180(4), 511-519.
Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29(6), 536-548.
Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733- 739
Steudel, K. et al. 1994. The biophysics of Bergmann's rule: a comparison of the effects of pelage and body size variation on metabolic rate. Can. J. Zool. 72: 70–77.
Stevenson, R.D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat., 126, 362–386.
T'ai, H. R., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49-65.
Tilman D. Resource competition and community structure. New Jersey, UK: Princeton University Press; 1982.
Vareschi E (1971) Duftunterscheidung bei der Honigbiene— Einzelzellableitungen und Verhaltensreaktionen. Zeitschrift fur Vergleichende Physiologie 75:143–173
Wenner AM, Meade DE, Friesen LJ. (1991). Recruitment, search behavior, and flight ranges of honey bees. Am Zool 31:768–82
Williams, R.J. & Martinez, N.D. (2000) Simple rules yield complex food webs. Nature, 404, 180–183.
Woodward, G., & Hildrew, A. G. (2002). Body‐size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71(6), 1063-1074.
Yodzis P. Competition for space and the structure of ecological communities. Berlin, Germany: Springer Science & Business Media; 2013
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/61ffefe1-86e8-4aea-a085-3f078f8e4acc/download
https://repository.urosario.edu.co/bitstreams/3be63c2b-4948-4c85-a5e2-a08efaa5d03e/download
https://repository.urosario.edu.co/bitstreams/73766a5f-249c-4d04-a911-f8728d05b628/download
https://repository.urosario.edu.co/bitstreams/3a4f0070-7594-44c5-8402-5f12f1afee1d/download
bitstream.checksum.fl_str_mv 957c3add710e7eadfcda90aa5e0866b3
fab9d9ed61d64f6ac005dee3306ae77e
cafad6e5920c26559db80f27847f813c
b9f4f33e34dd12e4cc1c57fa05c61283
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818107001611223040
spelling Herrera Gutiérrez, Laura MariaOrjuela, RafaelRiveros Rivera, Andre Josafat79974449600Barragán Barrera, Heidy NataliaBiólogoFull time7502bcc2-9aad-4548-a9d3-a4aa1e03eef46002020-08-20T21:39:02Z2020-08-20T21:39:02Z2020-08-12Las variaciones en el tamaño corporal representan un motor para la colonización de nuevos nichos representado en patrones ecogeográficos. La ley de Bergmann describe un patrón ecogeográfico donde las especies con mayor tamaño corporal se distribuyen a mayor latitud. No obstante, la ley de Bergmann sensu lato incluye factores abióticos como temperatura y altitud. En consecuencia, la ley de Bergmann sensu lato extiende el patrón modificado a distintos grupos que antes no se habían incluido, como en el caso de la Clase Insecta. Se sabe que las variaciones en el tamaño corporal de los insectos influyen en las dinámicas de forrajeo. Por lo tanto, la información ambiental que perciben y procesan los insectos varía con cambios en el tamaño corporal absoluto y relativo. En este estudio se evaluó la ley de Bergmann sensu lato aplicada en A. mellifera con respecto a una clina altitudinal en dos zonas de la cordillera oriental colombiana; evaluando variaciones de rasgos morfométricos y sensoriales, además de su relación con la percepción de la información olfativa y sus consecuencias en las actividades de forrajeo. Se encontró que las abejas de menor elevación presentaron menor magnitud para rasgos sensoriales y morfométricos a diferencia de las abejas que se distribuyen en la localidad con mayor elevación. Este patrón responde al principio de la ley de Bergmann sensu lato en función de una clina altitudinal. Las variaciones alométricas a nivel morfométrico registradas en el estudio tienen efecto en los rasgos sensoriales de A. mellifera. En consecuencia, se puede sugerir como la temperatura asociada a la altitud moldea las comunidades de A. mellifera, específicamente en tareas de polinización.Variations in body size represent an important driver in colonization of new niches, indicated by ecogeographic patterns. Bergmann's Law describes an ecogeographic pattern where species with larger body size are distributed at higher latitudes. However, Bergmann's law sensu lato includes abiotic factors such as temperature and altitude to complement the explanation of this pattern. Consequently, Bergmann's law sensu lato extends the modified pattern within groups that had not previously been included before, specifically, the Class Insecta. Variations in insect body size are known to influence foraging dynamics. Therefore, the environmental information that insects perceive and process varies with changes in absolute and relative body size. In this study, the Bergmann sensu lato law applied in A. mellifera was evaluated within an altitudinal cline in two areas of the Colombian eastern mountain range. We include the variations in morphometric and sensory traits, and their relationship with the perception of olfactory information and its consequences on foraging activities. We found that bees of lower elevation exhibited lower magnitude for sensory and morphometric traits, unlike bees that are distributed in the locality with higher elevation. This pattern follows the principle of Bergmann sensu lato based on an altitudinal cline. The allometric variations at the morphometric level evaluated in the study have an effect on the sensory features of A. mellifera. Consequently, we suggested how the temperature associated with the altitude shapes the A. mellifera communities, specifically in pollination tasks.Dirección de Investigación e Innovación de la Universidad del Rosario (Beca de fondos concursables para semilleros)application/pdfhttps://doi.org/10.48713/10336_28206 https://repository.urosario.edu.co/handle/10336/28206spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_abf2Abel, R., Rybak, J., & Menzel, R. (2001). Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. Journal of Comparative Neurology, 437(3), 363-383Alloway TM. 1972. Learning and memory in insects. Annu. Rev. Entomol. 17:43–56Apfelbach R, Russ D, Slotnick BM (1991) Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chem Sens 16:209–218Ashman, T. L., & Stanton, M. (1991). Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology, 72(3), 993-1003Bidau, C. J., & Martí, D. A. (2007). Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): inversion of Bergmann's and Rensch's rules. Annals of the Entomological Society of America, 100(6), 850-860Blackburn, T. M. et al. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. Div. Distr. 5: 165–174.Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum?. Integrative and Comparative Biology, 44(6), 413-424.Buchmann CM, Schurr FM, Nathan R, Jeltsch F. Habitat loss and fragmentation affecting mammal and bird communities—The role of interspecific competition and individual space use. Ecological Informatics. 2013; 14:90–8Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361-377.Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8(3), 224-228.Domic, A. I., & Capriles, J. M. (2009). Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant ecology, 205(2), 223-234.Dudley R (2001) The biomechanics and functional diversity of flight. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, CambridgeElekonich, M. M., & Roberts, S. P. (2005). Honey bees as a model for understanding mechanisms of life history transitions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 141(4), 362-371.Faber T, Menzel R. (2001). Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften 88:472–76.Farris, S. M., Robinson, G. E., Davis, R. L., & Fahrbach, S. E. (1999). Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. Journal of Comparative Neurology, 414(1), 97-113.Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F., & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural brain research, 209(2), 221-225.Galizia CG, Menzel R. (2000). Odour perception in honeybees: Coding information in glomerular patterns. Curr Op Neurobiol 10:504–510.Greenfield M (2002) Signalers and receivers. Oxford University Press. OxfordHegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology letters, 12(2), 184-195.Heinrich, B. (1993). The Hot Blooded Insects. Harvard University Press, Cambridge.Homberg, U. (1984). Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6), 825-836.Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Structure and Development. 30: 179-193Jeanson, R., Clark, R. M., Holbrook, C. T., Bertram, S. M., Fewell, J. H., & Kukuk, P. F. (2008). Division of labour and socially induced changes in response thresholds in associations of solitary halictine bees. Animal Behaviour, 76(3), 593-602.Jin, Y. et al. 2007. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai‐Xizang (Tibetan) Plateau. Belg. J. Zool. 137: 197–202.Kaissling, K. E., & Renner, M. (1968). Specialized chemoreceptors in the pore plates of. Apis. Z. Vergl. Physiol, 59, 357-361.Kelber C, Rössler W, Kleineidam CJ. (2006). Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 496:395–405Ken, T., Fuchs, S., Koeniger, N., & Ruiguang, Z. (2003). Morphological characterization of Apis cerana in the Yunnan Province of China. Apidologie, 34(6), 553-561.Klingenberg, C. P., Badyaev, A. V., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. The American Naturalist, 157(1), 11-23).Levinton, J.1988. Genetics, paleontology and macroevolution. Cambridge University Press, CambridgeLiu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68:164–174Malo, J. y Baonza, J. 2002. Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) Link in the Sierra de Guadarrama (Central Spain). Diversity and Distributions 8, 365–371Mattu, V. K., & Verma, L. R. (1983). Comparative morphometric studies on the Indian honeybee of the north-west Himalayas 1. Tongue and antenna. Journal of Apicultural Research, 22(2), 79-85.Mayr, E. 1956. Geographical character gradients and climatic adaptation. Evolution 10: 105–108.McNab, B. K. 1971. On the ecological significance of Bergmann's rule. Ecology 52: 845–854.Meiri, S. et al. 2007. What determines conformity to Bergmann's rule?. Global Ecol. Biogeogr. 16: 788–794Menzel R. 1990. Learning, memory and “cognition” in honey bees. In: Kesner RP, Olten DS, editors. Neurobiology of comparative cognition. Hillsdale, NJ: Erlbaum Inc. p 237–292Nijhout, H. F. (2003). The control of body size in insects. Developmental biology, 261(1), 1-9.Olalla-Tarraga, M.A. (2011). ‘Nullius in Bergmann’ or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 120, 1441–1444Osorio‐Canadas, S., Arnan, X., Rodrigo, A., Torné‐Noguera, A., Molowny, R., & Bosch, J. (2016). Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule. Ecology Letters, 19(12), 1395-1402.Page R.E. Jr., Erber J., Fondrk M.K. (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees ( Apis mellifera L.), J. Comp. Physiol. A 182, 489–500.Peters, M.K., Peisker, J., Steffan-Dewenter, I. & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. J. Biogeogr., doi:10.1111/jbi.12768.Reinhard, J., & Srinivasan, M. V. (2009). The role of scents in honey bee foraging and recruitment. Food exploitation by social insects: ecological, behavioral, and theoretical approaches, 1, 165-182.Riveros, A. J., & Gronenberg, W. (2010). Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behavioral ecology and sociobiology, 64(6), 955-966.Robertson, F.W., 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44, 869–896Schlichting, C. D. and Piggliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Mass: Sinauer Associates.Schwarz, S., Albert, L., Wystrach, A., & Cheng, K. (2011). Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology, 214(6), 901-906.Searcy, W. A. 1980. Optimum body sizes at different ambient temperatures: an energetics explanation of Bergmann's rule. J. Theor. Biol. 83: 579–593.Shelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist, 180(4), 511-519.Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29(6), 536-548.Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733- 739Steudel, K. et al. 1994. The biophysics of Bergmann's rule: a comparison of the effects of pelage and body size variation on metabolic rate. Can. J. Zool. 72: 70–77.Stevenson, R.D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat., 126, 362–386.T'ai, H. R., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49-65.Tilman D. Resource competition and community structure. New Jersey, UK: Princeton University Press; 1982.Vareschi E (1971) Duftunterscheidung bei der Honigbiene— Einzelzellableitungen und Verhaltensreaktionen. Zeitschrift fur Vergleichende Physiologie 75:143–173Wenner AM, Meade DE, Friesen LJ. (1991). Recruitment, search behavior, and flight ranges of honey bees. Am Zool 31:768–82Williams, R.J. & Martinez, N.D. (2000) Simple rules yield complex food webs. Nature, 404, 180–183.Woodward, G., & Hildrew, A. G. (2002). Body‐size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71(6), 1063-1074.Yodzis P. Competition for space and the structure of ecological communities. Berlin, Germany: Springer Science & Business Media; 2013instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMorfometríaEcología sensorialSensilas placodeasLey de BergmannAltitudTamañoInvertebrados592600MorphometrySensory ecologySensilla placodeaBergmann's lawAltitudeSizeEfectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis melliferaEffects of elevation on sensory allometry in the honey bee, Apis melliferabachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdfEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdfapplication/pdf403407https://repository.urosario.edu.co/bitstreams/61ffefe1-86e8-4aea-a085-3f078f8e4acc/download957c3add710e7eadfcda90aa5e0866b3MD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/3be63c2b-4948-4c85-a5e2-a08efaa5d03e/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52TEXTEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdf.txtEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdf.txtExtracted texttext/plain40654https://repository.urosario.edu.co/bitstreams/73766a5f-249c-4d04-a911-f8728d05b628/downloadcafad6e5920c26559db80f27847f813cMD53THUMBNAILEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdf.jpgEfectos-de-la-elevacion-sobre-la-alometria-sensorial-en-la-abeja-de-la-miel,-Apis-mellifera.pdf.jpgGenerated Thumbnailimage/jpeg2393https://repository.urosario.edu.co/bitstreams/3a4f0070-7594-44c5-8402-5f12f1afee1d/downloadb9f4f33e34dd12e4cc1c57fa05c61283MD5410336/28206oai:repository.urosario.edu.co:10336/282062020-11-21 18:38:38.468https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=