Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto

Giardia intestinalis es un parásito protozoario con distribución global, que infecta amplia gama de hospederos vertebrados. Tiene dos estadíos de vida, los trofozoítos (forma replicativa) y los quistes (forma transmisible e infectiva) que se encuentran en el agua y alimentos contaminados. En este es...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
OAI Identifier:
oai:repository.urosario.edu.co:10336/39894
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/39894
Palabra clave:
Giardia intestinalis
Peroxidación Catalítica en Fase Húmeda
Viabilidad de quistes
RT-qPCR
Arcillas pilarizadas con Al/Fe
Giardia intestinalis
Catalytic Wet Peroxide Oxidation
Cyst viability
RT-qPCR
Al/Fe-pillared clay
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_925f6bd4f35a8b5926fefbd7cc5bf9af
oai_identifier_str oai:repository.urosario.edu.co:10336/39894
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
dc.title.TranslatedTitle.none.fl_str_mv Effect of Catalytic Wet Peroxide Oxidation activated by an Al/Fe pillared clay catalyst on the viability of Giardia intestinalis cysts in surface water from the Pasto River
title Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
spellingShingle Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
Giardia intestinalis
Peroxidación Catalítica en Fase Húmeda
Viabilidad de quistes
RT-qPCR
Arcillas pilarizadas con Al/Fe
Giardia intestinalis
Catalytic Wet Peroxide Oxidation
Cyst viability
RT-qPCR
Al/Fe-pillared clay
title_short Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
title_full Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
title_fullStr Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
title_full_unstemmed Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
title_sort Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
dc.contributor.advisor.none.fl_str_mv Galeano, Luis Alejandro
Ramírez González, Juan David
dc.contributor.gruplac.none.fl_str_mv Grupo de Investigaciones Microbiológicas UR (GIMUR)
dc.subject.none.fl_str_mv Giardia intestinalis
Peroxidación Catalítica en Fase Húmeda
Viabilidad de quistes
RT-qPCR
Arcillas pilarizadas con Al/Fe
topic Giardia intestinalis
Peroxidación Catalítica en Fase Húmeda
Viabilidad de quistes
RT-qPCR
Arcillas pilarizadas con Al/Fe
Giardia intestinalis
Catalytic Wet Peroxide Oxidation
Cyst viability
RT-qPCR
Al/Fe-pillared clay
dc.subject.keyword.none.fl_str_mv Giardia intestinalis
Catalytic Wet Peroxide Oxidation
Cyst viability
RT-qPCR
Al/Fe-pillared clay
description Giardia intestinalis es un parásito protozoario con distribución global, que infecta amplia gama de hospederos vertebrados. Tiene dos estadíos de vida, los trofozoítos (forma replicativa) y los quistes (forma transmisible e infectiva) que se encuentran en el agua y alimentos contaminados. En este estudio se monitoreó el ARNm de quistes, como respuesta a la desinfección de agua superficial por Peroxidación Catalítica en Fase Húmeda (PCFH) activada por un catalizador de arcilla pilarizada con Al/Fe (Al/Fe-PILC); PCFH es un Proceso de Oxidación Avanzada (POA) evaluado en este estudio para la eliminación de quistes que exhiben alta resistencia a la cloración y otros métodos convencionales de desinfección. Los quistes de G. intestinalis (cepa WB, ensamblaje A) se cultivaron in vitro; se extrajo ARNm (1 x 105 quistes/mL) y se estandarizó un análisis de RT-qPCR para su detección y cuantificación utilizando los marcadores moleculares 18S-ARNr y β-giardina. Los experimentos catalíticos se realizaron en un reactor semi-continuo de 1 L utilizando agua superficial del río Pasto (Colombia) y se doparon con 100 quistes equivalentes Giardia/L teniendo en cuenta los factores experimentales de pH (6,0 y 7,0) y concentración de hierro activo del catalizador sólido (100 y 300 mg/L). Todos los experimentos catalíticos causaron pérdida de viabilidad de quistes de al menos 4 Log (99,99%); además, hasta alrededor del 35 % del Carbono Orgánico Disuelto (COD) y el 30 % del Nitrógeno Total Disuelto (NTD) se mineralizaron usando una dosis baja de peróxido de hidrógeno (0,037 mg H2O2/mg Fe.mg activo COD) en condiciones ambientales de temperatura (11 °C) y presión (73 kPa). El análisis de varianza mostró que la concentración de Fe activo (mg/L) ejerció un efecto significativo sobre la eliminación de quistes de G. intestinalis, la eliminación de COD y la fracción de H2O2 reaccionada (p < 0,05 con 95 % de nivel de confianza). Por su parte, en la optimización estadística de respuesta múltiple se obtuvo un valor de 0,95 para la función Deseabilidad, donde todas las respuestas alcanzaron el óptimo cuando la concentración de Fe activo fue de aproximadamente 80 mg/L y el pH 6,0. El pH no tuvo efecto significativo en los experimentos catalíticos. Este enfoque podría permitir a corto plazo monitorear a bajo costo la presencia de quistes de Giardia en el agua, así como prevenir la propagación de enfermedades infecciosas que son un problema de salud pública al complementar la desinfección convencional del agua con la PCFH en presencia de Al/Fe-PILC.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-27T20:37:18Z
dc.date.available.none.fl_str_mv 2023-06-27T20:37:18Z
dc.date.created.none.fl_str_mv 2023-05-18
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.none.fl_str_mv Trabajo de grado
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/39894
url https://repository.urosario.edu.co/handle/10336/39894
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.acceso.none.fl_str_mv Bloqueado (Texto referencial)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Bloqueado (Texto referencial)
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 48 pp
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Facultad de Ciencias Naturales
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Naturales
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Abeledo-Lameiro, M. J., Polo-López, M. I., Ares-Mazás, E., y Gómez-Couso, H. (2019). Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Applied Catalysis B: Environmental, 253, 341–347. https://doi.org/10.1016/j.apcatb.2019.04.049
Adam, R. D. (2001). Biology of Giardia lamblia. In Clinical Microbiology Reviews (Vol. 14, Issue 3, pp. 447–475). https://doi.org/10.1128/CMR.14.3.447-475.2001
Adam, R. D. (2021). Giardia duodenalis: Biology and Pathogenesis. https://doi.org/10.1128/CMR
Adeyemo, F. E., Singh, G., Reddy, P., y Stenström, T. A. (2018). Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid-based tools in clinical and environmental regimes. In Acta Tropica (Vol. 184, pp. 15–28). Elsevier B.V. https://doi.org/10.1016/j.actatropica.2018.01.011
Alonso, J. L., Amorós, I., y Guy, R. A. (2014). Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitology Research, 113(7), 2671–2678. https://doi.org/10.1007/s00436-014-3922-9
APHA, AWWA, WEF. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington D.C, USA.
Bakker, K. (2012). Water security: Research challenges and opportunities. In Science (Vol. 337, Issue 6097, pp. 914–915). American Association for the Advancement of Science. https://doi.org/10.1126/science.1226337
Baque, R. H., Gilliam, A. O., Robles, L. D., Jakubowski, W., y Slifko, T. R. (2011). A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. Water Research, 45(10), 3175–3184. https://doi.org/10.1016/j.watres.2011.03.032
Bertrand, I., Maux, M., Helmi, K., Hoffmann, L., Schwartzbrod, J., y Cauchie, H. M. (2009). Quantification of Giardia transcripts during in vitro excystation: Interest for the estimation of cyst viability. Water Research, 43(10), 2728–2738. https://doi.org/10.1016/j.watres.2009.03.028
Chaukura, N., Marais, S. S., Moyo, W., Mbali, N., Thakalekoala, L. C., Ingwani, T., Mamba, B. B., Jarvis, P., y Nkambule, T. T. I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review. In Journal of Environmental Chemical Engineering (Vol. 8, Issue 2). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.103659
Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., y Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 10(1). https://doi.org/10.3390/su10010086
Dayarathne, H. N. P., Angove, M. J., Aryal, R., Abuel-Naga, H., y Mainali, B. (2021). Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. In Journal of Water Process Engineering (Vol. 40). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2020.101820
de Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. In Current Opinion in Environmental Science and Health (Vol. 21). Elsevier B.V. https://doi.org/10.1016/j.coesh.2021.100249
Diamond, L. S., Harlow, D. R., y Cunnick, C. C. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. In Transactions of the Royal Society of Tropical Medicine and Hygiene (Vol. 72, Issue 4).
Efstratiou, A., Ongerth, J. E., y Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011–2016. In Water Research (Vol. 114, pp. 14–22). Elsevier Ltd. https://doi.org/10.1016/j.watres.2017.01.036
Einarsson, E., Ma’ayeh, S., y Svärd, S. G. (2016). An up-date on Giardia and giardiasis. In Current Opinion in Microbiology (Vol. 34, pp. 47–52). Elsevier Ltd. https://doi.org/10.1016/j.mib.2016.07.019
Feng, C., Xu, Z., Li, Y., Zhu, N., y Wang, Z. (2021). Research progress on the contamination status and control policy of Giardia and Cryptosporidium in drinking water. In Journal of Water Sanitation and Hygiene for Development (Vol. 11, Issue 6, pp. 867–886). IWA Publishing. https://doi.org/10.2166/washdev.2021.151
Fink, M. Y., Shapiro, D., y Singer, S. M. (2020). Giardia lamblia: Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. Current Protocols in Microbiology, 57(1). https://doi.org/10.1002/cpmc.102
Galeano, L. A., Bravo, P. F., Luna, C. D., Vicente, M. Ángel, y Gil, A. (2012). Removal of natural organic matter for drinking water production by Al/Fe-PILC-catalyzed wet peroxide oxidation: Effect of the catalyst preparation from concentrated precursors. Applied Catalysis B: Environmental, 111–112, 527–535. https://doi.org/10.1016/j.apcatb.2011.11.004
Galeano, L. A., Vicente, M. ángel, y Gil, A. (2014). Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catalysis Reviews: Science and Engineering, 56:3, 239-287. https://doi.org/10.1080/01614940.2014.904182
Galeano, L. A., Guerrero-Flórez, M., Sánchez, C. A., Gil, A., y Vicente, M. Á. (2019). Disinfection by chemical oxidation methods. In Handbook of Environmental Chemistry (Vol. 67, pp. 257–295). Springer Verlag. https://doi.org/10.1007/698_2017_179
Galeano, L. A., García-Mora, A. M., Cabrera, C. L., Vallejo, C. A., Muñoz, H. J., Hidalgo, A., Gil, A., y Vicente, M. (2022). Fabricación de Arcilla Pilarizada con Al y Fe a partir de precursores altamente concentrados y su aplicación en Procesos de Oxidación Avanzada. (Patente de Colombia. No. 40871). Superintendencia de Industria y Comercio. https://gimfc.udenar.edu.co/patentes/
García-Mora, A. M., Portilla-Delgado, C. S., Torres-Palma, R. A., Hidalgo-Troya, A., y Galeano, L. A. (2021). Catalytic wet peroxide oxidation to remove natural organic matter from real surface waters at urban and rural drinking water treatment plants. Journal of Water Process Engineering, 42. https://doi.org/10.1016/j.jwpe.2021.102136
Garcia-Mora, A. M., Torres-Palma, R. A., García, H., Hidalgo-Troya, A., y Galeano, L. A. (2021). Removal of dissolved natural organic matter by the Al/Fe pillared clay-activated-catalytic wet peroxide oxidation: Statistical multi-response optimization. Journal of Water Process Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101755
Ghernaout, D. (2020). Natural Organic Matter Removal in the Context of the Performance of Drinking Water Treatment Processes-Technical Notes. OALib, 07(09), 1–40. https://doi.org/10.4236/oalib.1106751
Guimarães, J. R., Franco, R. M. B., Guadagnini, R. A., y Santos, L. U. dos. (2014). Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H 2 O 2 /UV). International Scholarly Research Notices, 2014, 1–7. https://doi.org/10.1155/2014/525719
Guy, R. A., Payment, P., Krull, U. J., y Horgen, P. A. (2003). Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Applied and Environmental Microbiology, 69(9), 5178–5185. https://doi.org/10.1128/AEM.69.9.5178-5185.2003
Hamilton, K. A., Waso, M., Reyneke, B., Saeidi, N., Levine, A., Lalancette, C., Besner, M., Khan, W., y Ahmed, W. (2018). Cryptosporidium and Giardia in Wastewater and Surface Water Environments. Journal of Environmental Quality, 47(5), 1006–1023. https://doi.org/10.2134/jeq2018.04.0132
Ibáñez C, y Peñuelas J. (2019). Changing nutrients, changing rivers. Phosphorus removal from freshwater systems has wide-ranging ecological consequence. In Science (Vol. 365, Issue 6454, pp. 637–638). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaw9407
Kane, A. v, Ward, H. D., Keusch, G. T., y Pereira, M. E. A. (1991). In vitro Encystation of Giardia lamblia: Large-Scale Production of In vitro Cysts and Strain and Clone Differences in Encystation Efficiency. In Source: The Journal of Parasitology (Vol. 77, Issue 6).
Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. 77(4), 487–488.
Kitis, M., y Kaplan, S. S. (2007). Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere, 68(10), 1846–1853. https://doi.org/10.1016/j.chemosphere.2007.03.027
Koehler, A. v., Jex, A. R., Haydon, S. R., Stevens, M. A., y Gasser, R. B. (2014). Giardia/giardiasis - A perspective on diagnostic and analytical tools. In Biotechnology Advances (Vol. 32, Issue 2, pp. 280–289). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2013.10.009
Kondo Nakada, L. Y., Urbano dos Santos, L., y Guimarães, J. R. (2020). Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115144
Kralik, P., y Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. In Frontiers in Microbiology (Vol. 8, Issue FEB). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2017.00108
León, C. M., Muñoz, M., Hernández, C., Ayala, M. S., Flórez, C., Teherán, A., Cubides, J. R., y Ramírez, J. D. (2017). Analytical performance of Four Polymerase Chain Reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01907
Li, S. F., y Ran, Z. L. (2014). Inactivation of giardia intestinalis by h2o2/o3. Applied Mechanics and Materials, 675–677, 134–139. https://doi.org/10.4028/www.scientific.net/AMM.675-677.134
Lujan y Staffan. (2011). Giardia: A model organism.
Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., y Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. In Chemosphere (Vol. 83, Issue 11, pp. 1431–1442). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2011.01.018
Matilainen, A., y Sillanpää, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. In Chemosphere (Vol. 80, Issue 4, pp. 351–365). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2010.04.067
Mejia, R., Vicuña, Y., Broncano, N., Sandoval, C., Vaca, M., Chico, M., Cooper, P. J., y Nutman, T. B. (2013). A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. American Journal of Tropical Medicine and Hygiene, 88(6), 1041–1047. https://doi.org/10.4269/ajtmh.12-0726
Muñoz, H. J., Blanco, C., Gil, A., Vicente, M. ángel, y Galeano, L. A. (2017). Preparation of Al/Fe-pillared clays: Effect of the starting mineral. Materials, 10(12). https://doi.org/10.3390/ma10121364
Muñoz, H. J., Vallejo, C., Blanco, C., Gil, A., Vicente, M. Á., Ramírez, J. H., y Galeano, L. A. (2018). 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20(22), 5196–5208. https://doi.org/10.1039/c8gc02445f
Ordoñez-Ordoñez, A., Revelo-Romo, D. M., Garcia-Mora, A. M., Hidalgo-Troya, A., y Galeano, L. A. (2019). MS2 coliphage inactivation by Al/Fe PILC-activated Catalytic Wet Peroxide Oxidation: multiresponse statistical optimization. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01892
Portilla Delgado, C. S. (2021). Peroxidación Catalítica en Fase Húmeda de Materia Orgánica Natural Disuelta para la producción de agua de consumo. [Tesis de pregrado, Universidad de Nariño].
Rosado-García, F. M., Guerrero-Flórez, M., Karanis, G., Hinojosa, M. D. C., y Karanis, P. (2017). Water-borne protozoa parasites: The Latin American perspective. In International Journal of Hygiene and Environmental Health (Vol. 220, Issue 5, pp. 783–798). Elsevier GmbH. https://doi.org/10.1016/j.ijheh.2017.03.008
Sánchez, C., López, M. C., Galeano, L. A., Qvarnstrom, Y., Houghton, K., y Ramírez, J. D. (2018). Molecular detection and genotyping of pathogenic protozoan parasites in raw and treated water samples from southwest Colombia. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-3147-3
Seabolt, M. H., Roellig, D. M., y Konstantinidis, K. T. (2022). Genomic comparisons confirm Giardia duodenalis sub-assemblage AII as a unique species. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1010244
Sillanpää, M., Ncibi, M. C., y Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. In Journal of Environmental Management (Vol. 208, pp. 56–76). Academic Press. https://doi.org/10.1016/j.jenvman.2017.12.009
Travaillé, E., la Carbona, S., Gargala, G., Aubert, D., Guyot, K., Dumètre, A., Villena, I., y Houssin, M. (2016). Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control, 59, 359–365. https://doi.org/10.1016/j.foodcont.2015.06.007
US-EPA. (1999). Giardia: Drinking Water Health Advisory. www.epa.gov
US-EPA, of Ground Water, O., y Water, D. (2012). Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. http://www.epa.gov/safewater
World Health Organization. (2022). Drinking-water. 2022, octubre 9, de World Health Organization. Sitio web: https://www.who.int/en/news-room/fact-sheets/detail/drinking-water
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/c729c0ce-65d8-494a-af68-09fb1690cbdb/download
https://repository.urosario.edu.co/bitstreams/696f71dc-17c2-4fe4-8872-3c5d36bd0c28/download
https://repository.urosario.edu.co/bitstreams/b3854b40-16bb-4b78-83b1-40b88c4aaa77/download
https://repository.urosario.edu.co/bitstreams/0dc495aa-f7ab-40a2-ae91-54a758585eb6/download
https://repository.urosario.edu.co/bitstreams/5394bed2-2ac4-4bc7-9ec7-b716d74ea260/download
bitstream.checksum.fl_str_mv 72d57dc368132e690dec15c3f5e7a71e
b2825df9f458e9d5d96ee8b7cd74fde6
5643bfd9bcf29d560eeec56d584edaa9
6f0ab3be696098ebff130fc7ef5188a1
d9a7fba5a1b931e400da6f135c8e7c21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167425088749568
spelling Galeano, Luis Alejandro933860d6-a087-4f9d-baff-07f854def878-1Ramírez González, Juan David1011716118600Grupo de Investigaciones Microbiológicas UR (GIMUR)Reina Hidalgo, ArianaMagíster en Ciencias NaturalesMaestríaFull time9e289acc-214c-4e29-8181-1b2ed2316584-12023-06-27T20:37:18Z2023-06-27T20:37:18Z2023-05-18Giardia intestinalis es un parásito protozoario con distribución global, que infecta amplia gama de hospederos vertebrados. Tiene dos estadíos de vida, los trofozoítos (forma replicativa) y los quistes (forma transmisible e infectiva) que se encuentran en el agua y alimentos contaminados. En este estudio se monitoreó el ARNm de quistes, como respuesta a la desinfección de agua superficial por Peroxidación Catalítica en Fase Húmeda (PCFH) activada por un catalizador de arcilla pilarizada con Al/Fe (Al/Fe-PILC); PCFH es un Proceso de Oxidación Avanzada (POA) evaluado en este estudio para la eliminación de quistes que exhiben alta resistencia a la cloración y otros métodos convencionales de desinfección. Los quistes de G. intestinalis (cepa WB, ensamblaje A) se cultivaron in vitro; se extrajo ARNm (1 x 105 quistes/mL) y se estandarizó un análisis de RT-qPCR para su detección y cuantificación utilizando los marcadores moleculares 18S-ARNr y β-giardina. Los experimentos catalíticos se realizaron en un reactor semi-continuo de 1 L utilizando agua superficial del río Pasto (Colombia) y se doparon con 100 quistes equivalentes Giardia/L teniendo en cuenta los factores experimentales de pH (6,0 y 7,0) y concentración de hierro activo del catalizador sólido (100 y 300 mg/L). Todos los experimentos catalíticos causaron pérdida de viabilidad de quistes de al menos 4 Log (99,99%); además, hasta alrededor del 35 % del Carbono Orgánico Disuelto (COD) y el 30 % del Nitrógeno Total Disuelto (NTD) se mineralizaron usando una dosis baja de peróxido de hidrógeno (0,037 mg H2O2/mg Fe.mg activo COD) en condiciones ambientales de temperatura (11 °C) y presión (73 kPa). El análisis de varianza mostró que la concentración de Fe activo (mg/L) ejerció un efecto significativo sobre la eliminación de quistes de G. intestinalis, la eliminación de COD y la fracción de H2O2 reaccionada (p < 0,05 con 95 % de nivel de confianza). Por su parte, en la optimización estadística de respuesta múltiple se obtuvo un valor de 0,95 para la función Deseabilidad, donde todas las respuestas alcanzaron el óptimo cuando la concentración de Fe activo fue de aproximadamente 80 mg/L y el pH 6,0. El pH no tuvo efecto significativo en los experimentos catalíticos. Este enfoque podría permitir a corto plazo monitorear a bajo costo la presencia de quistes de Giardia en el agua, así como prevenir la propagación de enfermedades infecciosas que son un problema de salud pública al complementar la desinfección convencional del agua con la PCFH en presencia de Al/Fe-PILC.Giardia intestinalis is a protozoan parasite with a global distribution, infecting a wide range of vertebrate hosts. It has two life stages, trophozoites (replicative stage) and cysts (transmissible and infective stage) found in either contaminated food or water. In this study, the mRNA of cysts was monitored, as a response to the disinfection of surface water by Catalytic Wet Peroxide Oxidation (CWPO) activated by an Al/Fe-pillared clay catalyst (Al/Fe-PILC); CWPO is an Advanced Oxidation Process (AOP) assessed in our study for the removal of cysts that exhibit high resistance to chlorination and other standard disinfection methods. Cysts of G. intestinalis (strain WB, assemblage A) were cultured in vitro; the RNA was extracted (1x105 cysts/mL) and a RT-qPCR analysis was standardized for detection and quantification using the molecular markers 18S-rRNA and β-giardin. The catalytic experiments were carried out in a 1 L semicontinuous reactor using surface water from Pasto River (Colombia) that was doped with 100 equivalent Giardia cysts/L considering the experimental factors pH (6.0 - 7.0) and the concentration of active iron in the solid catalyst (100 - 300 mg/L). All the catalytic experiments caused loss of the cyst viability of at least 4 Log (99.99 %); besides, up to around 35 % of Dissolved Organic Carbon (DOC) and 30 % of Dissolved Total Nitrogen (DTN) vanished by using a low dose of hydrogen peroxide (0.037 mg H2O2/mg active Fe.mg DOC) under pretty middle ambient conditions of temperature (11 °C) and pressure (73 kPa). The analysis of variance showed the concentration of active Fe (mg/L) to exhibit a significant effect on the elimination of G. intestinalis cysts, DOC elimination, and fraction of reacted H2O2 (p < 0.05, 95 % confidence level). Meanwhile, in the statistical multiple-response optimization, a value of 0.95 was obtained in the Desirability function, where all the responses reached the optimum when the concentration of active Fe was approximately 80 mg/L and pH 6.3, whereas the pH did not display a significant effect on the catalytic performance. This approach could allow in the short term to monitor at low cost the presence of Giardia cysts in water as well as to prevent the spread of infectious diseases that are of public health concern by complementing conventional water disinfection with Catalytic Wet Peroxide Oxidation in the presence of Al/Fe-PILCs.48 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/39894Universidad del RosarioFacultad de Ciencias NaturalesMaestría en Ciencias NaturalesAttribution-NonCommercial-ShareAlike 4.0 InternationalBloqueado (Texto referencial)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_14cbAbeledo-Lameiro, M. J., Polo-López, M. I., Ares-Mazás, E., y Gómez-Couso, H. (2019). Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Applied Catalysis B: Environmental, 253, 341–347. https://doi.org/10.1016/j.apcatb.2019.04.049Adam, R. D. (2001). Biology of Giardia lamblia. In Clinical Microbiology Reviews (Vol. 14, Issue 3, pp. 447–475). https://doi.org/10.1128/CMR.14.3.447-475.2001Adam, R. D. (2021). Giardia duodenalis: Biology and Pathogenesis. https://doi.org/10.1128/CMRAdeyemo, F. E., Singh, G., Reddy, P., y Stenström, T. A. (2018). Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid-based tools in clinical and environmental regimes. In Acta Tropica (Vol. 184, pp. 15–28). Elsevier B.V. https://doi.org/10.1016/j.actatropica.2018.01.011Alonso, J. L., Amorós, I., y Guy, R. A. (2014). Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitology Research, 113(7), 2671–2678. https://doi.org/10.1007/s00436-014-3922-9APHA, AWWA, WEF. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington D.C, USA.Bakker, K. (2012). Water security: Research challenges and opportunities. In Science (Vol. 337, Issue 6097, pp. 914–915). American Association for the Advancement of Science. https://doi.org/10.1126/science.1226337Baque, R. H., Gilliam, A. O., Robles, L. D., Jakubowski, W., y Slifko, T. R. (2011). A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. Water Research, 45(10), 3175–3184. https://doi.org/10.1016/j.watres.2011.03.032Bertrand, I., Maux, M., Helmi, K., Hoffmann, L., Schwartzbrod, J., y Cauchie, H. M. (2009). Quantification of Giardia transcripts during in vitro excystation: Interest for the estimation of cyst viability. Water Research, 43(10), 2728–2738. https://doi.org/10.1016/j.watres.2009.03.028Chaukura, N., Marais, S. S., Moyo, W., Mbali, N., Thakalekoala, L. C., Ingwani, T., Mamba, B. B., Jarvis, P., y Nkambule, T. T. I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review. In Journal of Environmental Chemical Engineering (Vol. 8, Issue 2). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.103659Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., y Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 10(1). https://doi.org/10.3390/su10010086Dayarathne, H. N. P., Angove, M. J., Aryal, R., Abuel-Naga, H., y Mainali, B. (2021). Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. In Journal of Water Process Engineering (Vol. 40). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2020.101820de Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. In Current Opinion in Environmental Science and Health (Vol. 21). Elsevier B.V. https://doi.org/10.1016/j.coesh.2021.100249Diamond, L. S., Harlow, D. R., y Cunnick, C. C. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. In Transactions of the Royal Society of Tropical Medicine and Hygiene (Vol. 72, Issue 4).Efstratiou, A., Ongerth, J. E., y Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011–2016. In Water Research (Vol. 114, pp. 14–22). Elsevier Ltd. https://doi.org/10.1016/j.watres.2017.01.036Einarsson, E., Ma’ayeh, S., y Svärd, S. G. (2016). An up-date on Giardia and giardiasis. In Current Opinion in Microbiology (Vol. 34, pp. 47–52). Elsevier Ltd. https://doi.org/10.1016/j.mib.2016.07.019Feng, C., Xu, Z., Li, Y., Zhu, N., y Wang, Z. (2021). Research progress on the contamination status and control policy of Giardia and Cryptosporidium in drinking water. In Journal of Water Sanitation and Hygiene for Development (Vol. 11, Issue 6, pp. 867–886). IWA Publishing. https://doi.org/10.2166/washdev.2021.151Fink, M. Y., Shapiro, D., y Singer, S. M. (2020). Giardia lamblia: Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. Current Protocols in Microbiology, 57(1). https://doi.org/10.1002/cpmc.102Galeano, L. A., Bravo, P. F., Luna, C. D., Vicente, M. Ángel, y Gil, A. (2012). Removal of natural organic matter for drinking water production by Al/Fe-PILC-catalyzed wet peroxide oxidation: Effect of the catalyst preparation from concentrated precursors. Applied Catalysis B: Environmental, 111–112, 527–535. https://doi.org/10.1016/j.apcatb.2011.11.004Galeano, L. A., Vicente, M. ángel, y Gil, A. (2014). Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catalysis Reviews: Science and Engineering, 56:3, 239-287. https://doi.org/10.1080/01614940.2014.904182Galeano, L. A., Guerrero-Flórez, M., Sánchez, C. A., Gil, A., y Vicente, M. Á. (2019). Disinfection by chemical oxidation methods. In Handbook of Environmental Chemistry (Vol. 67, pp. 257–295). Springer Verlag. https://doi.org/10.1007/698_2017_179Galeano, L. A., García-Mora, A. M., Cabrera, C. L., Vallejo, C. A., Muñoz, H. J., Hidalgo, A., Gil, A., y Vicente, M. (2022). Fabricación de Arcilla Pilarizada con Al y Fe a partir de precursores altamente concentrados y su aplicación en Procesos de Oxidación Avanzada. (Patente de Colombia. No. 40871). Superintendencia de Industria y Comercio. https://gimfc.udenar.edu.co/patentes/García-Mora, A. M., Portilla-Delgado, C. S., Torres-Palma, R. A., Hidalgo-Troya, A., y Galeano, L. A. (2021). Catalytic wet peroxide oxidation to remove natural organic matter from real surface waters at urban and rural drinking water treatment plants. Journal of Water Process Engineering, 42. https://doi.org/10.1016/j.jwpe.2021.102136Garcia-Mora, A. M., Torres-Palma, R. A., García, H., Hidalgo-Troya, A., y Galeano, L. A. (2021). Removal of dissolved natural organic matter by the Al/Fe pillared clay-activated-catalytic wet peroxide oxidation: Statistical multi-response optimization. Journal of Water Process Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101755Ghernaout, D. (2020). Natural Organic Matter Removal in the Context of the Performance of Drinking Water Treatment Processes-Technical Notes. OALib, 07(09), 1–40. https://doi.org/10.4236/oalib.1106751Guimarães, J. R., Franco, R. M. B., Guadagnini, R. A., y Santos, L. U. dos. (2014). Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H 2 O 2 /UV). International Scholarly Research Notices, 2014, 1–7. https://doi.org/10.1155/2014/525719Guy, R. A., Payment, P., Krull, U. J., y Horgen, P. A. (2003). Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Applied and Environmental Microbiology, 69(9), 5178–5185. https://doi.org/10.1128/AEM.69.9.5178-5185.2003Hamilton, K. A., Waso, M., Reyneke, B., Saeidi, N., Levine, A., Lalancette, C., Besner, M., Khan, W., y Ahmed, W. (2018). Cryptosporidium and Giardia in Wastewater and Surface Water Environments. Journal of Environmental Quality, 47(5), 1006–1023. https://doi.org/10.2134/jeq2018.04.0132Ibáñez C, y Peñuelas J. (2019). Changing nutrients, changing rivers. Phosphorus removal from freshwater systems has wide-ranging ecological consequence. In Science (Vol. 365, Issue 6454, pp. 637–638). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaw9407Kane, A. v, Ward, H. D., Keusch, G. T., y Pereira, M. E. A. (1991). In vitro Encystation of Giardia lamblia: Large-Scale Production of In vitro Cysts and Strain and Clone Differences in Encystation Efficiency. In Source: The Journal of Parasitology (Vol. 77, Issue 6).Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. 77(4), 487–488.Kitis, M., y Kaplan, S. S. (2007). Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere, 68(10), 1846–1853. https://doi.org/10.1016/j.chemosphere.2007.03.027Koehler, A. v., Jex, A. R., Haydon, S. R., Stevens, M. A., y Gasser, R. B. (2014). Giardia/giardiasis - A perspective on diagnostic and analytical tools. In Biotechnology Advances (Vol. 32, Issue 2, pp. 280–289). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2013.10.009Kondo Nakada, L. Y., Urbano dos Santos, L., y Guimarães, J. R. (2020). Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115144Kralik, P., y Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. In Frontiers in Microbiology (Vol. 8, Issue FEB). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2017.00108León, C. M., Muñoz, M., Hernández, C., Ayala, M. S., Flórez, C., Teherán, A., Cubides, J. R., y Ramírez, J. D. (2017). Analytical performance of Four Polymerase Chain Reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01907Li, S. F., y Ran, Z. L. (2014). Inactivation of giardia intestinalis by h2o2/o3. Applied Mechanics and Materials, 675–677, 134–139. https://doi.org/10.4028/www.scientific.net/AMM.675-677.134Lujan y Staffan. (2011). Giardia: A model organism.Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., y Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. In Chemosphere (Vol. 83, Issue 11, pp. 1431–1442). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2011.01.018Matilainen, A., y Sillanpää, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. In Chemosphere (Vol. 80, Issue 4, pp. 351–365). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2010.04.067Mejia, R., Vicuña, Y., Broncano, N., Sandoval, C., Vaca, M., Chico, M., Cooper, P. J., y Nutman, T. B. (2013). A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. American Journal of Tropical Medicine and Hygiene, 88(6), 1041–1047. https://doi.org/10.4269/ajtmh.12-0726Muñoz, H. J., Blanco, C., Gil, A., Vicente, M. ángel, y Galeano, L. A. (2017). Preparation of Al/Fe-pillared clays: Effect of the starting mineral. Materials, 10(12). https://doi.org/10.3390/ma10121364Muñoz, H. J., Vallejo, C., Blanco, C., Gil, A., Vicente, M. Á., Ramírez, J. H., y Galeano, L. A. (2018). 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20(22), 5196–5208. https://doi.org/10.1039/c8gc02445fOrdoñez-Ordoñez, A., Revelo-Romo, D. M., Garcia-Mora, A. M., Hidalgo-Troya, A., y Galeano, L. A. (2019). MS2 coliphage inactivation by Al/Fe PILC-activated Catalytic Wet Peroxide Oxidation: multiresponse statistical optimization. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01892Portilla Delgado, C. S. (2021). Peroxidación Catalítica en Fase Húmeda de Materia Orgánica Natural Disuelta para la producción de agua de consumo. [Tesis de pregrado, Universidad de Nariño].Rosado-García, F. M., Guerrero-Flórez, M., Karanis, G., Hinojosa, M. D. C., y Karanis, P. (2017). Water-borne protozoa parasites: The Latin American perspective. In International Journal of Hygiene and Environmental Health (Vol. 220, Issue 5, pp. 783–798). Elsevier GmbH. https://doi.org/10.1016/j.ijheh.2017.03.008Sánchez, C., López, M. C., Galeano, L. A., Qvarnstrom, Y., Houghton, K., y Ramírez, J. D. (2018). Molecular detection and genotyping of pathogenic protozoan parasites in raw and treated water samples from southwest Colombia. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-3147-3Seabolt, M. H., Roellig, D. M., y Konstantinidis, K. T. (2022). Genomic comparisons confirm Giardia duodenalis sub-assemblage AII as a unique species. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1010244Sillanpää, M., Ncibi, M. C., y Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. In Journal of Environmental Management (Vol. 208, pp. 56–76). Academic Press. https://doi.org/10.1016/j.jenvman.2017.12.009Travaillé, E., la Carbona, S., Gargala, G., Aubert, D., Guyot, K., Dumètre, A., Villena, I., y Houssin, M. (2016). Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control, 59, 359–365. https://doi.org/10.1016/j.foodcont.2015.06.007US-EPA. (1999). Giardia: Drinking Water Health Advisory. www.epa.govUS-EPA, of Ground Water, O., y Water, D. (2012). Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. http://www.epa.gov/safewaterWorld Health Organization. (2022). Drinking-water. 2022, octubre 9, de World Health Organization. Sitio web: https://www.who.int/en/news-room/fact-sheets/detail/drinking-waterinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURGiardia intestinalisPeroxidación Catalítica en Fase HúmedaViabilidad de quistesRT-qPCRArcillas pilarizadas con Al/FeGiardia intestinalisCatalytic Wet Peroxide OxidationCyst viabilityRT-qPCRAl/Fe-pillared clayEfecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río PastoEffect of Catalytic Wet Peroxide Oxidation activated by an Al/Fe pillared clay catalyst on the viability of Giardia intestinalis cysts in surface water from the Pasto RiverbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fFacultad de Ciencias NaturalesORIGINALEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdfEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdfapplication/pdf6198236https://repository.urosario.edu.co/bitstreams/c729c0ce-65d8-494a-af68-09fb1690cbdb/download72d57dc368132e690dec15c3f5e7a71eMD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/696f71dc-17c2-4fe4-8872-3c5d36bd0c28/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/b3854b40-16bb-4b78-83b1-40b88c4aaa77/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdf.txtEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdf.txtExtracted texttext/plain80714https://repository.urosario.edu.co/bitstreams/0dc495aa-f7ab-40a2-ae91-54a758585eb6/download6f0ab3be696098ebff130fc7ef5188a1MD54THUMBNAILEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdf.jpgEfecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdf.jpgGenerated Thumbnailimage/jpeg2406https://repository.urosario.edu.co/bitstreams/5394bed2-2ac4-4bc7-9ec7-b716d74ea260/downloadd9a7fba5a1b931e400da6f135c8e7c21MD5510336/39894oai:repository.urosario.edu.co:10336/398942023-07-04 12:43:53.287http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==