Aprendizaje de máquina aplicado al control
El objetivo de este trabajo es emular la acción de un controlador utilizando modelos de inteligencia artificial (IA). Para ello, se empleó como planta un sistema de segundo orden que describe la temperatura en un cuarto. Sobre dicha planta, se diseña un controlador predictivo basado en modelo (MPC,...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/38270
- Acceso en línea:
- https://doi.org/10.48713/10336_38270
https://repository.urosario.edu.co/handle/10336/38270
- Palabra clave:
- Machine learning
Teoria de control
Aprendizaje automático
Control
Modelos de inteligencia artificial (IA)
Controlador predictivo basado en modelo MPC
Uso de IA para el control de procesos dinámicos
Machine learning
Control theory
Control
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_922b6635ea350d2926805e2bbba59100 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/38270 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Aprendizaje de máquina aplicado al control |
dc.title.TranslatedTitle.none.fl_str_mv |
Machine Learning Applied to Control |
title |
Aprendizaje de máquina aplicado al control |
spellingShingle |
Aprendizaje de máquina aplicado al control Machine learning Teoria de control Aprendizaje automático Control Modelos de inteligencia artificial (IA) Controlador predictivo basado en modelo MPC Uso de IA para el control de procesos dinámicos Machine learning Control theory Control |
title_short |
Aprendizaje de máquina aplicado al control |
title_full |
Aprendizaje de máquina aplicado al control |
title_fullStr |
Aprendizaje de máquina aplicado al control |
title_full_unstemmed |
Aprendizaje de máquina aplicado al control |
title_sort |
Aprendizaje de máquina aplicado al control |
dc.contributor.advisor.none.fl_str_mv |
Obando Bravo, Germán Dario |
dc.subject.none.fl_str_mv |
Machine learning Teoria de control Aprendizaje automático Control Modelos de inteligencia artificial (IA) Controlador predictivo basado en modelo MPC Uso de IA para el control de procesos dinámicos |
topic |
Machine learning Teoria de control Aprendizaje automático Control Modelos de inteligencia artificial (IA) Controlador predictivo basado en modelo MPC Uso de IA para el control de procesos dinámicos Machine learning Control theory Control |
dc.subject.keyword.none.fl_str_mv |
Machine learning Control theory Control |
description |
El objetivo de este trabajo es emular la acción de un controlador utilizando modelos de inteligencia artificial (IA). Para ello, se empleó como planta un sistema de segundo orden que describe la temperatura en un cuarto. Sobre dicha planta, se diseña un controlador predictivo basado en modelo (MPC, por sus siglas en inglés) como referencia para entrenar los algoritmos de IA. MPC es un método que utiliza modelos matemáticos para predecir el comportamiento futuro del sistema y tomar acciones de control óptimas en función de ciertos objetivos preestablecidos. La emulación del controlador puede plantearse como un problema de regresión, por lo tanto se emplearon tres de los modelos más populares de IA para efectuar regresiones: regresión lineal, vectores de soporte y redes neuronales. Para el entrenamiento de los modelos de IA, se utilizó una base de datos generada al simular el comportamiento del controlador MPC sobre la planta de temperatura. Se realizaron diferentes pruebas para evaluar el desempeño de los modelos de IA comparándolos con el controlador MPC. Los resultados mostraron que los modelos de IA pueden ser utilizados con éxito para emular dicho controlador con la ventaja de tener un menor costo computacional. En este sentido, cabe resaltar que MPC necesita resolver iterativamente un problema de optimización, mientras que los algoritmos de IA usados sólo requieren evaluar cierta función (que se obtiene al entrenar los modelos) en cada iteración de control. En conclusión, esta investigación es un primer paso exitoso en un camino prometedor: el uso de IA para el control de procesos dinámicos. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-03-24T21:09:59Z |
dc.date.available.none.fl_str_mv |
2023-03-24T21:09:59Z |
dc.date.created.none.fl_str_mv |
2023-02-17 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_38270 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/38270 |
url |
https://doi.org/10.48713/10336_38270 https://repository.urosario.edu.co/handle/10336/38270 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
39 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.none.fl_str_mv |
Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
A. Bensoussan. Estimation and control of dynamical systems, volume 48. Springer, 2018. F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems. Cambridge University Press, 2017. E. F. Camacho and C. B. Alba. Model predictive control. Springer science & business media, 2013. N. Castle. Supervised vs. unsupervised machine learning. Retrieved from, 2017. N. Castle. What is semi-supervised learning. Oracle DataScience. Com, 2018. B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible architectures for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018. B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-level residual networks from dynamical systems view. arXiv preprint arXiv:1710.10348, 2017. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. Advances in neural information processing systems, 31, 2018. H. J. Ferreau, S. Almér, H. Peyrl, J. L. Jerez, and A. Domahidi. Survey of industrial applications of embedded model predictive control. In 2016 European Control Conference (ECC), pages 601–601. IEEE, 2016. J. Jobson and J. Jobson. Multiple linear regression. Applied multivariate data analysis: Regression and experimental design, pages 219–398, 1991. M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349(6245):255–260, 2015. W. Koehrsen. Overfitting vs. underfitting: A complete example. Towards Data Science, 2018. F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons, 2012. C. Ma, L. Wu, et al. Machine learning from a continuous viewpoint, i. Science China Mathematics, 63(11):2233–2266, 2020. B. Mahesh. Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9:381–386, 2020. C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378, 2018. S. Prajna, P. A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex optimization. IEEE Transactions on Automatic Control, 49(2):310–314, 2004. R. Raj. Java Deep Learning Cookbook: Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j. Packt Publishing Ltd, 2019. B. Recht. A tour of reinforcement learning: The view from continuous control. Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019. R. Rojas. Neural networks: a systematic introduction. Springer Science & Business Media, 2013. A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017. P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3):648–654, 1999. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint ar- Xiv:1712.01815, 2017. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018. V. Vapnik. Estimation of dependences based on empirical data. Springer Science & Business Media, 2006. K.W.Wong, G. Franciolini, V. De Luca, V. Baibhav, E. Berti, P. Pani, and A. Riotto. Constraining the primordial black hole scenario with bayesian inference and machine learning: the gwtc-2 gravitational wave catalog. Physical Review D, 103(2):023026, 2021. B. Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018. G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1):35–62, 1998. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/0d1898c9-1590-42d0-846f-f87f53cb28ed/download https://repository.urosario.edu.co/bitstreams/8513adbe-b492-49ec-8eb0-266621e09da1/download https://repository.urosario.edu.co/bitstreams/f27c0505-7602-4f51-9687-6994c3218259/download https://repository.urosario.edu.co/bitstreams/e129c247-7dbf-4ee5-bf94-756d6bcc2183/download https://repository.urosario.edu.co/bitstreams/51668b46-67a1-4bd1-98db-7e51a79e3571/download |
bitstream.checksum.fl_str_mv |
f99c92f6cfd87fa7770e2e38480f3221 b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 96fc8b3aff89432dd0efc7f8710689a9 b4e52cb1d237379660d8c9d50ebdfe71 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106947013967872 |
spelling |
Obando Bravo, Germán Dariob3e2b137-428a-4fca-a82a-6f4abedbc274-1Rambaut Lemus, Daniel FelipeProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónPregradoFull time2c81bcf1-ac12-4fef-b238-3eb718449caa-12023-03-24T21:09:59Z2023-03-24T21:09:59Z2023-02-17El objetivo de este trabajo es emular la acción de un controlador utilizando modelos de inteligencia artificial (IA). Para ello, se empleó como planta un sistema de segundo orden que describe la temperatura en un cuarto. Sobre dicha planta, se diseña un controlador predictivo basado en modelo (MPC, por sus siglas en inglés) como referencia para entrenar los algoritmos de IA. MPC es un método que utiliza modelos matemáticos para predecir el comportamiento futuro del sistema y tomar acciones de control óptimas en función de ciertos objetivos preestablecidos. La emulación del controlador puede plantearse como un problema de regresión, por lo tanto se emplearon tres de los modelos más populares de IA para efectuar regresiones: regresión lineal, vectores de soporte y redes neuronales. Para el entrenamiento de los modelos de IA, se utilizó una base de datos generada al simular el comportamiento del controlador MPC sobre la planta de temperatura. Se realizaron diferentes pruebas para evaluar el desempeño de los modelos de IA comparándolos con el controlador MPC. Los resultados mostraron que los modelos de IA pueden ser utilizados con éxito para emular dicho controlador con la ventaja de tener un menor costo computacional. En este sentido, cabe resaltar que MPC necesita resolver iterativamente un problema de optimización, mientras que los algoritmos de IA usados sólo requieren evaluar cierta función (que se obtiene al entrenar los modelos) en cada iteración de control. En conclusión, esta investigación es un primer paso exitoso en un camino prometedor: el uso de IA para el control de procesos dinámicos.The objective of this work is to emulate the action of a controller using artificial intelligence (AI) models. For this purpose, a second-order system that describes the temperature in a room was employed as the plant. On this plant, a model-based predictive controller (MPC) was designed as a reference to train the AI algorithms. MPC is a method that uses mathematical models to predict the future behavior of the system and take optimal control actions based on certain pre-established objectives. The emulation of the controller can be formulated as a regression problem, therefore, three of the most popular AI models were used for regression: linear regression, support vectors, and neural networks. To train the AI models, a database generated by simulating the behavior of the MPC controller on the temperature plant was used. Different tests were carried out to evaluate the performance of the AI models, comparing them with the MPC controller. The results showed that AI models can be successfully used to emulate the controller with the advantage of having lower computational costs. In this sense, it is worth noting that MPC needs to iteratively solve an optimization problem, while the AI algorithms used only require evaluating a certain function (which is obtained by training the models) at each control iteration. In conclusion, this research is a successful first step in a promising path: the use of AI for the control of dynamic processes.39 ppapplication/pdfhttps://doi.org/10.48713/10336_38270 https://repository.urosario.edu.co/handle/10336/38270spaUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACCAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2A. Bensoussan. Estimation and control of dynamical systems, volume 48. Springer, 2018.F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems. Cambridge University Press, 2017.E. F. Camacho and C. B. Alba. Model predictive control. Springer science & business media, 2013.N. Castle. Supervised vs. unsupervised machine learning. Retrieved from, 2017.N. Castle. What is semi-supervised learning. Oracle DataScience. Com, 2018.B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. Reversible architectures for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-level residual networks from dynamical systems view. arXiv preprint arXiv:1710.10348, 2017.R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. Advances in neural information processing systems, 31, 2018.H. J. Ferreau, S. Almér, H. Peyrl, J. L. Jerez, and A. Domahidi. Survey of industrial applications of embedded model predictive control. In 2016 European Control Conference (ECC), pages 601–601. IEEE, 2016.J. Jobson and J. Jobson. Multiple linear regression. Applied multivariate data analysis: Regression and experimental design, pages 219–398, 1991.M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349(6245):255–260, 2015.W. Koehrsen. Overfitting vs. underfitting: A complete example. Towards Data Science, 2018.F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons, 2012.C. Ma, L. Wu, et al. Machine learning from a continuous viewpoint, i. Science China Mathematics, 63(11):2233–2266, 2020.B. Mahesh. Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9:381–386, 2020.C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378, 2018.S. Prajna, P. A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex optimization. IEEE Transactions on Automatic Control, 49(2):310–314, 2004.R. Raj. Java Deep Learning Cookbook: Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j. Packt Publishing Ltd, 2019.B. Recht. A tour of reinforcement learning: The view from continuous control. Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.R. Rojas. Neural networks: a systematic introduction. Springer Science & Business Media, 2013.A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3):648–654, 1999.D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint ar- Xiv:1712.01815, 2017.R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.V. Vapnik. Estimation of dependences based on empirical data. Springer Science & Business Media, 2006.K.W.Wong, G. Franciolini, V. De Luca, V. Baibhav, E. Berti, P. Pani, and A. Riotto. Constraining the primordial black hole scenario with bayesian inference and machine learning: the gwtc-2 gravitational wave catalog. Physical Review D, 103(2):023026, 2021.B. Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1):35–62, 1998.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMachine learningTeoria de controlAprendizaje automáticoControlModelos de inteligencia artificial (IA)Controlador predictivo basado en modelo MPCUso de IA para el control de procesos dinámicosMachine learningControl theoryControlAprendizaje de máquina aplicado al controlMachine Learning Applied to ControlbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Ingeniería, Ciencia y TecnologíaORIGINALAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdfAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdfapplication/pdf625941https://repository.urosario.edu.co/bitstreams/0d1898c9-1590-42d0-846f-f87f53cb28ed/downloadf99c92f6cfd87fa7770e2e38480f3221MD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/8513adbe-b492-49ec-8eb0-266621e09da1/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/f27c0505-7602-4f51-9687-6994c3218259/download3b6ce8e9e36c89875e8cf39962fe8920MD53TEXTAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdf.txtAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdf.txtExtracted texttext/plain50055https://repository.urosario.edu.co/bitstreams/e129c247-7dbf-4ee5-bf94-756d6bcc2183/download96fc8b3aff89432dd0efc7f8710689a9MD54THUMBNAILAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdf.jpgAprendizaje-de-maquina-aplicado-al-control-Thesis_master.pdf.jpgGenerated Thumbnailimage/jpeg3062https://repository.urosario.edu.co/bitstreams/51668b46-67a1-4bd1-98db-7e51a79e3571/downloadb4e52cb1d237379660d8c9d50ebdfe71MD5510336/38270oai:repository.urosario.edu.co:10336/382702023-03-25 03:02:41.533http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |