Beyond the mean in fork-join queues: efficient approximation for response-time tails
Fork-join queues are natural models for various computer and communications systems that involve parallel multitasking and the splitting and resynchronizing of data, such as parallel computing, query processing in distributed databases, and parallel disk access. Job response time in a fork-join queu...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27286
- Acceso en línea:
- https://doi.org/10.1016/j.peva.2015.06.007
https://repository.urosario.edu.co/handle/10336/27286
- Palabra clave:
- Fork-join queues
Response-time distribution
Matrix-analytic methods
Order statistics
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_8b9699d639c485a0c29b40470d37191b |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27286 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
e1d48e1f-f195-4e4b-9c1b-f62c730d04e5800352026006549d3b2-d9df-440b-acfa-5833e4b4b3232020-08-19T14:41:37Z2020-08-19T14:41:37Z2015-09Fork-join queues are natural models for various computer and communications systems that involve parallel multitasking and the splitting and resynchronizing of data, such as parallel computing, query processing in distributed databases, and parallel disk access. Job response time in a fork-join queue is a critical performance indicator but its exact analysis is challenging. We introduce a stochastic model for -node homogeneous fork-join queues () that focuses on the difference in length between any node-queue and the shortest one, truncating the state space such that the maximum difference is at most a constant . Whilst most previous methods focus on the mean response time, our model is also able to evaluate the response time distribution, as well as accommodating phase-type processing times and Markovian arrival processes. In order to tackle scenarios with high loads, which require a large value of to provide sufficient accuracy, we develop an efficient algorithm using matrix-analytic methods. Tests against simulation show that the proposed model yields accurate results for 2-node fork-join queues. As the model becomes numerically intractable for large values of , we further propose an approximate approach, based on properties of order statistics and extreme values. The approximation gives a high degree of accuracy on response time tails, and has the advantage of being efficient and scalable, requiring only the analytical results for a single-node and 2-node fork-join queues, which we obtain with the aforementioned matrix-analytic model. Comparison with simulation results shows that our approximation yields good fits for the tails, even in very large cases with general processing and inter-arrival times.application/pdfhttps://doi.org/10.1016/j.peva.2015.06.007ISSN: 0166-5316EISSN: 1872-745Xhttps://repository.urosario.edu.co/handle/10336/27286engElsevier11699Performance EvaluationVol. 91Performance Evaluation, ISSN: 0166-5316;EISSN: 1872-745X, Vol.91 (2015); pp. 99-116https://www.sciencedirect.com/science/article/pii/S0166531615000553Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Performance Evaluationinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFork-join queuesResponse-time distributionMatrix-analytic methodsOrder statisticsBeyond the mean in fork-join queues: efficient approximation for response-time tailsMás allá de la media en colas de unión en bifurcación: aproximación eficiente para colas de tiempo de respuestaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Qiu, ZhanPérez, Juan F.Harrison, Peter G.ORIGINAL1-s2-0-S0166531615000553-main.pdfapplication/pdf727562https://repository.urosario.edu.co/bitstreams/f0ecc22e-8ecf-407d-a731-87f1c8a169c6/downloade5f509279e9418bfa3c15bd3c6821350MD51TEXT1-s2-0-S0166531615000553-main.pdf.txt1-s2-0-S0166531615000553-main.pdf.txtExtracted texttext/plain79460https://repository.urosario.edu.co/bitstreams/4aed4bf9-e91d-4d8a-9bb0-5411387f7c76/downloadcc043cc08fc6a517edcdc8cc2b01c670MD52THUMBNAIL1-s2-0-S0166531615000553-main.pdf.jpg1-s2-0-S0166531615000553-main.pdf.jpgGenerated Thumbnailimage/jpeg4199https://repository.urosario.edu.co/bitstreams/1d698ae3-9b1c-4a4c-8cb9-0ed14927c126/download7342fc1d7f6ac8cb17219f1c70c812beMD5310336/27286oai:repository.urosario.edu.co:10336/272862021-09-23 12:34:54.929https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
dc.title.TranslatedTitle.spa.fl_str_mv |
Más allá de la media en colas de unión en bifurcación: aproximación eficiente para colas de tiempo de respuesta |
title |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
spellingShingle |
Beyond the mean in fork-join queues: efficient approximation for response-time tails Fork-join queues Response-time distribution Matrix-analytic methods Order statistics |
title_short |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
title_full |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
title_fullStr |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
title_full_unstemmed |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
title_sort |
Beyond the mean in fork-join queues: efficient approximation for response-time tails |
dc.subject.keyword.spa.fl_str_mv |
Fork-join queues Response-time distribution Matrix-analytic methods Order statistics |
topic |
Fork-join queues Response-time distribution Matrix-analytic methods Order statistics |
description |
Fork-join queues are natural models for various computer and communications systems that involve parallel multitasking and the splitting and resynchronizing of data, such as parallel computing, query processing in distributed databases, and parallel disk access. Job response time in a fork-join queue is a critical performance indicator but its exact analysis is challenging. We introduce a stochastic model for -node homogeneous fork-join queues () that focuses on the difference in length between any node-queue and the shortest one, truncating the state space such that the maximum difference is at most a constant . Whilst most previous methods focus on the mean response time, our model is also able to evaluate the response time distribution, as well as accommodating phase-type processing times and Markovian arrival processes. In order to tackle scenarios with high loads, which require a large value of to provide sufficient accuracy, we develop an efficient algorithm using matrix-analytic methods. Tests against simulation show that the proposed model yields accurate results for 2-node fork-join queues. As the model becomes numerically intractable for large values of , we further propose an approximate approach, based on properties of order statistics and extreme values. The approximation gives a high degree of accuracy on response time tails, and has the advantage of being efficient and scalable, requiring only the analytical results for a single-node and 2-node fork-join queues, which we obtain with the aforementioned matrix-analytic model. Comparison with simulation results shows that our approximation yields good fits for the tails, even in very large cases with general processing and inter-arrival times. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015-09 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:41:37Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:41:37Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.peva.2015.06.007 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0166-5316 EISSN: 1872-745X |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27286 |
url |
https://doi.org/10.1016/j.peva.2015.06.007 https://repository.urosario.edu.co/handle/10336/27286 |
identifier_str_mv |
ISSN: 0166-5316 EISSN: 1872-745X |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
116 |
dc.relation.citationStartPage.none.fl_str_mv |
99 |
dc.relation.citationTitle.none.fl_str_mv |
Performance Evaluation |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 91 |
dc.relation.ispartof.spa.fl_str_mv |
Performance Evaluation, ISSN: 0166-5316;EISSN: 1872-745X, Vol.91 (2015); pp. 99-116 |
dc.relation.uri.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0166531615000553 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
Performance Evaluation |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/f0ecc22e-8ecf-407d-a731-87f1c8a169c6/download https://repository.urosario.edu.co/bitstreams/4aed4bf9-e91d-4d8a-9bb0-5411387f7c76/download https://repository.urosario.edu.co/bitstreams/1d698ae3-9b1c-4a4c-8cb9-0ed14927c126/download |
bitstream.checksum.fl_str_mv |
e5f509279e9418bfa3c15bd3c6821350 cc043cc08fc6a517edcdc8cc2b01c670 7342fc1d7f6ac8cb17219f1c70c812be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167595374346240 |