Evaluating record history of medical devices using association discovery and clustering techniques

In this research, association discovery and clustering techniques were utilized for improving the efficiency of a hospital's service and of the maintenance tasks in a clinical engineering department. The indicator in this study is service requests. The association discovery techniques revealed...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24051
Acceso en línea:
https://doi.org/10.1016/j.eswa.2013.03.034
https://repository.urosario.edu.co/handle/10336/24051
Palabra clave:
Biomedical engineering
Cluster analysis
Data mining
Hospitals
Maintenance
Medical problems
Operations research
Quality of service
Association discoveries
Clinical engineering
Clustering analysis
Clustering techniques
Corrective actions
Intrinsic failure
Outsourced services
Scheduled maintenance
Biomedical equipment
Biomedical engineering
Clinical engineering
Clustering analysis
Data mining
Hospital
Maintenance and engineering
Operations research
Outsourced services
Rights
License
Abierto (Texto Completo)
id EDOCUR2_8a6a5407a40bafba7211de78f75977e0
oai_identifier_str oai:repository.urosario.edu.co:10336/24051
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling f2e876d6-94d1-4fd7-bc85-4194ad0925a6-12020-05-26T00:08:03Z2020-05-26T00:08:03Z2013In this research, association discovery and clustering techniques were utilized for improving the efficiency of a hospital's service and of the maintenance tasks in a clinical engineering department. The indicator in this study is service requests. The association discovery techniques revealed problems in users' training (errors in operating procedures), intrinsic failures in medical devices, and badly scheduled maintenance policies. Clustering techniques uncovered the main causes of failures. With the evidence obtained corrective actions were taken. The service request average dropped dramatically from 6.4 to 0.4 during the analyzed period. © 2013 Elsevier Ltd. All rights reserved.application/pdfhttps://doi.org/10.1016/j.eswa.2013.03.0349574174https://repository.urosario.edu.co/handle/10336/24051engElsevier Ltd5305No. 135292Expert Systems with ApplicationsVol. 40Expert Systems with Applications, ISSN:9574174, Vol.40, No.13 (2013); pp. 5292-5305https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878317994&doi=10.1016%2fj.eswa.2013.03.034&partnerID=40&md5=d4d7b59c39ac55179f005ea8b47e9cfeAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBiomedical engineeringCluster analysisData miningHospitalsMaintenanceMedical problemsOperations researchQuality of serviceAssociation discoveriesClinical engineeringClustering analysisClustering techniquesCorrective actionsIntrinsic failureOutsourced servicesScheduled maintenanceBiomedical equipmentBiomedical engineeringClinical engineeringClustering analysisData miningHospitalMaintenance and engineeringOperations researchOutsourced servicesEvaluating record history of medical devices using association discovery and clustering techniquesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Cruz, Antonio Miguel10336/24051oai:repository.urosario.edu.co:10336/240512022-05-02 07:37:21.372834https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Evaluating record history of medical devices using association discovery and clustering techniques
title Evaluating record history of medical devices using association discovery and clustering techniques
spellingShingle Evaluating record history of medical devices using association discovery and clustering techniques
Biomedical engineering
Cluster analysis
Data mining
Hospitals
Maintenance
Medical problems
Operations research
Quality of service
Association discoveries
Clinical engineering
Clustering analysis
Clustering techniques
Corrective actions
Intrinsic failure
Outsourced services
Scheduled maintenance
Biomedical equipment
Biomedical engineering
Clinical engineering
Clustering analysis
Data mining
Hospital
Maintenance and engineering
Operations research
Outsourced services
title_short Evaluating record history of medical devices using association discovery and clustering techniques
title_full Evaluating record history of medical devices using association discovery and clustering techniques
title_fullStr Evaluating record history of medical devices using association discovery and clustering techniques
title_full_unstemmed Evaluating record history of medical devices using association discovery and clustering techniques
title_sort Evaluating record history of medical devices using association discovery and clustering techniques
dc.subject.keyword.spa.fl_str_mv Biomedical engineering
Cluster analysis
Data mining
Hospitals
Maintenance
Medical problems
Operations research
Quality of service
Association discoveries
Clinical engineering
Clustering analysis
Clustering techniques
Corrective actions
Intrinsic failure
Outsourced services
Scheduled maintenance
Biomedical equipment
Biomedical engineering
Clinical engineering
Clustering analysis
Data mining
Hospital
Maintenance and engineering
Operations research
Outsourced services
topic Biomedical engineering
Cluster analysis
Data mining
Hospitals
Maintenance
Medical problems
Operations research
Quality of service
Association discoveries
Clinical engineering
Clustering analysis
Clustering techniques
Corrective actions
Intrinsic failure
Outsourced services
Scheduled maintenance
Biomedical equipment
Biomedical engineering
Clinical engineering
Clustering analysis
Data mining
Hospital
Maintenance and engineering
Operations research
Outsourced services
description In this research, association discovery and clustering techniques were utilized for improving the efficiency of a hospital's service and of the maintenance tasks in a clinical engineering department. The indicator in this study is service requests. The association discovery techniques revealed problems in users' training (errors in operating procedures), intrinsic failures in medical devices, and badly scheduled maintenance policies. Clustering techniques uncovered the main causes of failures. With the evidence obtained corrective actions were taken. The service request average dropped dramatically from 6.4 to 0.4 during the analyzed period. © 2013 Elsevier Ltd. All rights reserved.
publishDate 2013
dc.date.created.spa.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:08:03Z
dc.date.available.none.fl_str_mv 2020-05-26T00:08:03Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.eswa.2013.03.034
dc.identifier.issn.none.fl_str_mv 9574174
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24051
url https://doi.org/10.1016/j.eswa.2013.03.034
https://repository.urosario.edu.co/handle/10336/24051
identifier_str_mv 9574174
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 5305
dc.relation.citationIssue.none.fl_str_mv No. 13
dc.relation.citationStartPage.none.fl_str_mv 5292
dc.relation.citationTitle.none.fl_str_mv Expert Systems with Applications
dc.relation.citationVolume.none.fl_str_mv Vol. 40
dc.relation.ispartof.spa.fl_str_mv Expert Systems with Applications, ISSN:9574174, Vol.40, No.13 (2013); pp. 5292-5305
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878317994&doi=10.1016%2fj.eswa.2013.03.034&partnerID=40&md5=d4d7b59c39ac55179f005ea8b47e9cfe
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167603016368128