A novel methodology for characterizing and predicting protein functional sites

Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- d...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2008
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28870
Acceso en línea:
https://doi.org/10.1109/BIBM.2007.36
https://repository.urosario.edu.co/handle/10336/28870
Palabra clave:
Functional genomics
Protein functional sites
Feature extraction
Clustering
Classification
Metalbinding sites
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_880f2430df4e2ca9a2e5e457283e181d
oai_identifier_str oai:repository.urosario.edu.co:10336/28870
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling bf233df3-bd1a-4a43-ac6f-6646ac82b6b9-1ee461b88-8e5e-435a-9765-7315b8ce290a-1059f6e0f-cd27-4217-8638-233e8dafe847-179653065-12020-08-28T15:49:58Z2020-08-28T15:49:58Z2008-01-02Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- dependent of conserved residues and conserved residue ge- ometry and takes advantage of the large number of protein structures available to construct models using a machine learning approach. Particularly, the proposed method per- formed feature extraction, clustering and classification on a protein structure data set, and it was validated on metal- binding sites (Ca2+, Zn2+, Na+,K+, Mg2+, Mn2+, Cu2+, Fe3+, Hg2+, Cl-) present in a non-redundant PDB (a total of 11,959 metal-binding sites in 3,609 proteins). Feature extraction provided a description of critical fea- tures for each metal-binding site, which were consistent with prior knowledge about them. Furthermore, new in- sights about metal-binding site microenvironments could be provided by the descriptors thus obtained. Results using k-fold cross-validation for classification showed accuracy above 90%. Complete proteins were scanned using these classifiers to locate metal-binding sites. Keywords: Functional Genomics, Protein functional sites, Feature Extraction, Clustering, Classification, Metal- binding sites.application/pdfhttps://doi.org/10.1109/BIBM.2007.36ISBN: 978-0-7695-3031-4https://repository.urosario.edu.co/handle/10336/28870engIEEE3543492007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)IEEE International Conference on Bioinformatics and Biomedicine (BIBM), ISBN: 978-0-7695-3031-4 (2007); pp. 349-354https://www.computer.org/csdl/proceedings-article/bibm/2007/30310349/12OmNBNM8OnRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFunctional genomicsProtein functional sitesFeature extractionClusteringClassificationMetalbinding sitesA novel methodology for characterizing and predicting protein functional sitesUna metodología novedosa para caracterizar y predecir sitios funcionales de proteínasbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Bobadilla, LeonardoNino, FernandoCepeda, EdilbertoPatarroyo, Manuel A.10336/28870oai:repository.urosario.edu.co:10336/288702021-06-03 00:49:42.404https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A novel methodology for characterizing and predicting protein functional sites
dc.title.TranslatedTitle.spa.fl_str_mv Una metodología novedosa para caracterizar y predecir sitios funcionales de proteínas
title A novel methodology for characterizing and predicting protein functional sites
spellingShingle A novel methodology for characterizing and predicting protein functional sites
Functional genomics
Protein functional sites
Feature extraction
Clustering
Classification
Metalbinding sites
title_short A novel methodology for characterizing and predicting protein functional sites
title_full A novel methodology for characterizing and predicting protein functional sites
title_fullStr A novel methodology for characterizing and predicting protein functional sites
title_full_unstemmed A novel methodology for characterizing and predicting protein functional sites
title_sort A novel methodology for characterizing and predicting protein functional sites
dc.subject.keyword.spa.fl_str_mv Functional genomics
Protein functional sites
Feature extraction
Clustering
Classification
Metalbinding sites
topic Functional genomics
Protein functional sites
Feature extraction
Clustering
Classification
Metalbinding sites
description Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- dependent of conserved residues and conserved residue ge- ometry and takes advantage of the large number of protein structures available to construct models using a machine learning approach. Particularly, the proposed method per- formed feature extraction, clustering and classification on a protein structure data set, and it was validated on metal- binding sites (Ca2+, Zn2+, Na+,K+, Mg2+, Mn2+, Cu2+, Fe3+, Hg2+, Cl-) present in a non-redundant PDB (a total of 11,959 metal-binding sites in 3,609 proteins). Feature extraction provided a description of critical fea- tures for each metal-binding site, which were consistent with prior knowledge about them. Furthermore, new in- sights about metal-binding site microenvironments could be provided by the descriptors thus obtained. Results using k-fold cross-validation for classification showed accuracy above 90%. Complete proteins were scanned using these classifiers to locate metal-binding sites. Keywords: Functional Genomics, Protein functional sites, Feature Extraction, Clustering, Classification, Metal- binding sites.
publishDate 2008
dc.date.created.spa.fl_str_mv 2008-01-02
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:49:58Z
dc.date.available.none.fl_str_mv 2020-08-28T15:49:58Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/BIBM.2007.36
dc.identifier.issn.none.fl_str_mv ISBN: 978-0-7695-3031-4
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28870
url https://doi.org/10.1109/BIBM.2007.36
https://repository.urosario.edu.co/handle/10336/28870
identifier_str_mv ISBN: 978-0-7695-3031-4
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 354
dc.relation.citationStartPage.none.fl_str_mv 349
dc.relation.citationTitle.none.fl_str_mv 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)
dc.relation.ispartof.spa.fl_str_mv IEEE International Conference on Bioinformatics and Biomedicine (BIBM), ISBN: 978-0-7695-3031-4 (2007); pp. 349-354
dc.relation.uri.spa.fl_str_mv https://www.computer.org/csdl/proceedings-article/bibm/2007/30310349/12OmNBNM8On
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1828160665388318720