A novel methodology for characterizing and predicting protein functional sites
Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- d...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2008
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28870
- Acceso en línea:
- https://doi.org/10.1109/BIBM.2007.36
https://repository.urosario.edu.co/handle/10336/28870
- Palabra clave:
- Functional genomics
Protein functional sites
Feature extraction
Clustering
Classification
Metalbinding sites
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_880f2430df4e2ca9a2e5e457283e181d |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28870 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
bf233df3-bd1a-4a43-ac6f-6646ac82b6b9-1ee461b88-8e5e-435a-9765-7315b8ce290a-1059f6e0f-cd27-4217-8638-233e8dafe847-179653065-12020-08-28T15:49:58Z2020-08-28T15:49:58Z2008-01-02Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- dependent of conserved residues and conserved residue ge- ometry and takes advantage of the large number of protein structures available to construct models using a machine learning approach. Particularly, the proposed method per- formed feature extraction, clustering and classification on a protein structure data set, and it was validated on metal- binding sites (Ca2+, Zn2+, Na+,K+, Mg2+, Mn2+, Cu2+, Fe3+, Hg2+, Cl-) present in a non-redundant PDB (a total of 11,959 metal-binding sites in 3,609 proteins). Feature extraction provided a description of critical fea- tures for each metal-binding site, which were consistent with prior knowledge about them. Furthermore, new in- sights about metal-binding site microenvironments could be provided by the descriptors thus obtained. Results using k-fold cross-validation for classification showed accuracy above 90%. Complete proteins were scanned using these classifiers to locate metal-binding sites. Keywords: Functional Genomics, Protein functional sites, Feature Extraction, Clustering, Classification, Metal- binding sites.application/pdfhttps://doi.org/10.1109/BIBM.2007.36ISBN: 978-0-7695-3031-4https://repository.urosario.edu.co/handle/10336/28870engIEEE3543492007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)IEEE International Conference on Bioinformatics and Biomedicine (BIBM), ISBN: 978-0-7695-3031-4 (2007); pp. 349-354https://www.computer.org/csdl/proceedings-article/bibm/2007/30310349/12OmNBNM8OnRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFunctional genomicsProtein functional sitesFeature extractionClusteringClassificationMetalbinding sitesA novel methodology for characterizing and predicting protein functional sitesUna metodología novedosa para caracterizar y predecir sitios funcionales de proteínasbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Bobadilla, LeonardoNino, FernandoCepeda, EdilbertoPatarroyo, Manuel A.10336/28870oai:repository.urosario.edu.co:10336/288702021-06-03 00:49:42.404https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A novel methodology for characterizing and predicting protein functional sites |
dc.title.TranslatedTitle.spa.fl_str_mv |
Una metodología novedosa para caracterizar y predecir sitios funcionales de proteínas |
title |
A novel methodology for characterizing and predicting protein functional sites |
spellingShingle |
A novel methodology for characterizing and predicting protein functional sites Functional genomics Protein functional sites Feature extraction Clustering Classification Metalbinding sites |
title_short |
A novel methodology for characterizing and predicting protein functional sites |
title_full |
A novel methodology for characterizing and predicting protein functional sites |
title_fullStr |
A novel methodology for characterizing and predicting protein functional sites |
title_full_unstemmed |
A novel methodology for characterizing and predicting protein functional sites |
title_sort |
A novel methodology for characterizing and predicting protein functional sites |
dc.subject.keyword.spa.fl_str_mv |
Functional genomics Protein functional sites Feature extraction Clustering Classification Metalbinding sites |
topic |
Functional genomics Protein functional sites Feature extraction Clustering Classification Metalbinding sites |
description |
Since there is a strong need for computational methods to predict and characterize functional sites for initial anno- tations of protein structures, a new methodology that relies on descriptions of the functional sites based on local prop- erties is proposed in this paper. This new approach is in- dependent of conserved residues and conserved residue ge- ometry and takes advantage of the large number of protein structures available to construct models using a machine learning approach. Particularly, the proposed method per- formed feature extraction, clustering and classification on a protein structure data set, and it was validated on metal- binding sites (Ca2+, Zn2+, Na+,K+, Mg2+, Mn2+, Cu2+, Fe3+, Hg2+, Cl-) present in a non-redundant PDB (a total of 11,959 metal-binding sites in 3,609 proteins). Feature extraction provided a description of critical fea- tures for each metal-binding site, which were consistent with prior knowledge about them. Furthermore, new in- sights about metal-binding site microenvironments could be provided by the descriptors thus obtained. Results using k-fold cross-validation for classification showed accuracy above 90%. Complete proteins were scanned using these classifiers to locate metal-binding sites. Keywords: Functional Genomics, Protein functional sites, Feature Extraction, Clustering, Classification, Metal- binding sites. |
publishDate |
2008 |
dc.date.created.spa.fl_str_mv |
2008-01-02 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:58Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:58Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/BIBM.2007.36 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-0-7695-3031-4 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28870 |
url |
https://doi.org/10.1109/BIBM.2007.36 https://repository.urosario.edu.co/handle/10336/28870 |
identifier_str_mv |
ISBN: 978-0-7695-3031-4 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
354 |
dc.relation.citationStartPage.none.fl_str_mv |
349 |
dc.relation.citationTitle.none.fl_str_mv |
2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007) |
dc.relation.ispartof.spa.fl_str_mv |
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), ISBN: 978-0-7695-3031-4 (2007); pp. 349-354 |
dc.relation.uri.spa.fl_str_mv |
https://www.computer.org/csdl/proceedings-article/bibm/2007/30310349/12OmNBNM8On |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007) |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1828160665388318720 |