Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1

La malaria es una de las enfermedades tropicales transmitidas por vectores más importantes a nivel mundial, donde Plasmodium vivax representa una de las especies más ampliamente distribuidas, afectando ~13.8 millones de personas por año. Pese a ello, el progreso aparentemente lento de la infección y...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/19095
Acceso en línea:
https://doi.org/10.48713/10336_19095
http://repository.urosario.edu.co/handle/10336/19095
Palabra clave:
Malaria
Receptor-ligando
Proteína de las roptrias
Plasmodium vivax
Enfermedades
Malaria
Receptor-ligand interactions
Rhoptry neck proteins
Plasmodium vivax
Malaria
Plasmodium vivax
Rights
License
Abierto (Texto Completo)
id EDOCUR2_822d2c3880359450d0dfee1b40d4ef1a
oai_identifier_str oai:repository.urosario.edu.co:10336/19095
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
title Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
spellingShingle Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
Malaria
Receptor-ligando
Proteína de las roptrias
Plasmodium vivax
Enfermedades
Malaria
Receptor-ligand interactions
Rhoptry neck proteins
Plasmodium vivax
Malaria
Plasmodium vivax
title_short Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
title_full Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
title_fullStr Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
title_full_unstemmed Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
title_sort Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1
dc.contributor.advisor.none.fl_str_mv Patarroyo, Manuel A.
Fuentes García, Manuel
Fernández-Soto, Pedro
dc.subject.spa.fl_str_mv Malaria
Receptor-ligando
Proteína de las roptrias
Plasmodium vivax
topic Malaria
Receptor-ligando
Proteína de las roptrias
Plasmodium vivax
Enfermedades
Malaria
Receptor-ligand interactions
Rhoptry neck proteins
Plasmodium vivax
Malaria
Plasmodium vivax
dc.subject.ddc.spa.fl_str_mv Enfermedades
dc.subject.keyword.spa.fl_str_mv Malaria
Receptor-ligand interactions
Rhoptry neck proteins
Plasmodium vivax
dc.subject.lemb.spa.fl_str_mv Malaria
Plasmodium vivax
description La malaria es una de las enfermedades tropicales transmitidas por vectores más importantes a nivel mundial, donde Plasmodium vivax representa una de las especies más ampliamente distribuidas, afectando ~13.8 millones de personas por año. Pese a ello, el progreso aparentemente lento de la infección y los niveles bajos de parasitemia en el humano, comparados a lo reportado en Plasmodium falciparum, han llevado a clasificar a la infección por P. vivax erróneamente como benigna. Esto, sumado a los retos experimentales que trae consigo el cultivo de este parásito, obstaculizan en gran medida el conocimiento a nivel biológico, celular y molecular, necesario para el desarrollo de métodos de control efectivos contra P. vivax. Hoy en día, se conoce que un inadecuado diagnóstico, el mal manejo terapéutico y/o el retraso en el tratamiento, pueden llevar a recaídas y estados de enfermedad grave, similares a los reportados para la malaria producida por P. falciparum, lo que impone retos en la búsqueda de nuevas alternativas específicas contra esta especie. Teniendo en cuenta la necesidad de identificar posibles blancos terapéuticos contra P. vivax, este trabajo se enfocó en estudiar interacciones del tipo receptor-ligando y proteína-proteína de moléculas de P. vivax localizadas en los organelos apicales de esquizontes intraeritrocíticos. Basados en estudios previos en P. falciparum y Toxoplasma gondii, donde se describe la importancia funcional de las proteínas localizadas en el cuello de las roptrias (RONs) -2, -4 y 5 y del antígeno apical de membrana 1 (AMA1), se caracterizó en P. vivax la unión de cada una de estas proteínas con reticulocitos humanos y se evaluó la capacidad de PvRON2 para establecer interacciones con las proteínas PvRON4, PvRON5 y PvAMA1. Para esto, inicialmente se caracterizó mediante herramientas bioinformáticas y experimentales la presencia de los genes pvron4 y pvron5 en el genoma y transcriptoma de esquizontes de la cepa Vivax Colombia Guaviare 1 (VCG-1) de P. vivax. Estos dos genes codifican proteínas de alto peso molecular que se expresan en el polo apical de esquizontes y co-localizan con proteínas presentes en las roptrias. Para evaluar la capacidad de interacción de las proteínas PvRON2, PvRON4, PvRON5 y PvAMA1 con receptores sobre la membrana de reticulocitos humanos, todas ellas fueron producidas de forma recombinante y purificadas mediante cromatografía de afinidad. Se encontró que la proteína recombinante PvRON5 se unió tanto a normocitos como a reticulocitos CD71+, con una marcada preferencia por reticulocitos humanos. Por su parte, las proteínas recombinantes que incluyen los dominios I y II de PvAMA-1 (PvAMA-DI-DII), la región central de la proteína PvRON2 (PvRON2-RI) y la región carboxi-terminal de PvRON4, interactúan específicamente con reticulocitos CD71+CD45-. Los estudios de competencia de unión con péptidos sintéticos que cubren las secuencias de las proteínas recombinantes mostraron que los péptidos 21270 (derivado del DI de PvAMA1), 40305 (de PvRON4) y 40595 (de PvRON2-RI) fueron capaces de inhibir la unión de las proteínas recombinantes a reticulocitos CD71+CD45-, lo que sugiere que estas secuencias peptídicas contienen parte de las propiedades de unión de cada una de las proteínas de las que derivan. Los tres péptidos se unen específicamente y con alta afinidad a eritrocitos con porcentajes de unión mayores al 2% (obtenidas de las curvas de unión específica), permitiendo catalogarlos como péptidos con alta capacidad de unión a eritrocitos (HABPs, del inglés High Activity Binding Peptides). La unión de las proteínas PvAMA1 y PvRON4 a eritrocitos humanos fue sensible al tratamiento de los eritrocitos con diferentes enzimas (tripsina, quimotripsina y/o neuraminidasa), sugiriendo que la naturaleza de los receptores para estas proteínas es de tipo proteico. Estos resultados destacan la función de adhesina de las proteínas evaluadas y revelan las regiones mínimas de interacción con la célula hospedera, que sumado a la expresión de estas proteínas en esquizontes intraeritrocíticos y su localización en organelos apicales, sugieren una fuerte participación de estas moléculas durante el proceso de invasión de los merozoitos de P. vivax a reticulocitos humanos. Finalmente, mediante resonancia de plasmones de superficie, se caracterizaron las interacciones entre la proteína PvRON2 con las proteínas PvRON4, PvRON5 y PvAMA1. Los análisis revelaron que la región carboxi-terminal de la proteína PvRON2 (PvRON2-RII) y PvRON2-RI interactúan específicamente y con alta afinidad con el dominio II y III de PvAMA1 (PvAMA-DII-DIII) y con una menor afinidad con las proteínas PvAMA-DI-DII, PvRON4 y PvRON5. Al modificar algunos residuos de la proteína PvAMA1, reportados en P. falciparum como críticos en la interacción RON2-AMA1, no se encontraron diferencias importantes en los valores de las velocidades de asociación (Kon), disociación (Koff) y en la constante de disociación de la interacción (kD). Esto sugiere que, si bien existen interacciones proteína-proteína (IPP) conservadas entre estos parásitos (Pv-Pf), cada parásito utiliza distintas regiones de las proteínas para interactuar, lo que resalta su capacidad para especializarse o restringirse para invadir un tipo de célula específica y pone de manifiesto aún más la necesidad de diseñar medidas de control específicas contra P. vivax.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-04-16
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-02-18T16:10:28Z
dc.date.available.none.fl_str_mv 2019-02-18T16:10:28Z
dc.type.eng.fl_str_mv doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.document.spa.fl_str_mv Tesis
dc.type.spa.spa.fl_str_mv Tesis de doctorado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_19095
dc.identifier.uri.none.fl_str_mv http://repository.urosario.edu.co/handle/10336/19095
url https://doi.org/10.48713/10336_19095
http://repository.urosario.edu.co/handle/10336/19095
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencias Biomédicas
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Organización Mundial de la Salud: Informe Mundial sobre Paludismo 2016. Organización Mundial de la Salud; 2017.
Organización Mundial de la Salud: Informe Mundial sobre el Paludismo 2017. Organización Mundial de la Salud; 2017.
Organización Panamericana de la Salud / Organización Mundial de la Salud: Alerta Epidemiológica: Aumento de casos de malaria. Organización Panamericana de la Salud / Organización Mundial de la Salud.; 2017.
Guerra CA, Snow RW, Hay SI: Mapping the global extent of malaria in 2005. Trends Parasitol 2006, 22:353-358.
Gupta H, Dhunputh P, Bhatt AN, Satyamoorthy K, Umakanth S: Cerebral malaria in a man with Plasmodium vivax mono-infection: a case report. Trop Doct 2016, 46:241- 245.
Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA: Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009, 9:555-566.
Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W: Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J 2014, 13:481.
Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, Killick- Kendrick R, Wolf R, Sinden R, Koontz LC, Stanfill PS: Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg 1982, 31:1291-1293.
Carlton JM, Sina BJ, Adams JH: Why is Plasmodium vivax a neglected tropical disease? PLoS Negl Trop Dis 2011, 5:e1160.
Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, Baird JK: Key Knowledge Gaps for Plasmodium vivax Control and Elimination. Am J Trop Med Hyg 2016, 95:62-71
Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, et al: Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 2001, 183:1653-1661.
Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, et al: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147.
Paing MM, Tolia NH: Multimeric assembly of host-pathogen adhesion complexes involved in apicomplexan invasion. PLoS Pathog 2014, 10:e1004120.
Woodson SA: Macromolecular complexes: how RNA and protein get together. Curr Biol 1996, 6:23-25.
Panichakul T, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Cui L, Udomsangpetch R: Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int J Parasitol 2007, 37:1551-1557.
Noulin F, Borlon C, Van Den Abbeele J, D'Alessandro U, Erhart A: 1912-2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol 2013, 29:286-294.
Pico de Coana Y, Rodriguez J, Guerrero E, Barrero C, Rodriguez R, Mendoza M, Patarroyo MA: A highly infective Plasmodium vivax strain adapted to Aotus monkeys: quantitative haematological and molecular determinations useful for P. vivax malaria vaccine development. Vaccine 2003, 21:3930-3937.
Armistead JS, Adams JH: Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017.
Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, Ginsburg H, Nosten F, Day NP, White NJ, et al: The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A 2008, 105:16290-16295.
Patarroyo MA, Calderon D, Moreno-Perez DA: Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines 2012, 11:1249-1260.
Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, et al: Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015, 1:367-379.
Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L: Determination of the Plasmodium vivax schizont stage proteome. J Proteomics 2011, 74:1701-1710.
Moreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA: Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics 2014, 113C:268- 280.
Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM: Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018, 8:34.
Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA: Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene 2011, 481:17-23.
Mongui A, Angel DI, Moreno-Perez DA, Villarreal-Gonzalez S, Almonacid H, Vanegas M, Patarroyo MA: Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar J 2010, 9:283.
Mongui A, Angel DI, Gallego G, Reyes C, Martinez P, Guhl F, Patarroyo MA: Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine 2009, 28:415-421
Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003, 1:E5.
Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NW, Harvey KL, Fowkes FJ, Barlow PN, Rayner JC, Wright GJ, et al: Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015, 11:e1004670.
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF: Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013, 29:228-236.
Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, Tsuboi T, Torii M: Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 2009, 58:29-35.
Curtidor H, Patino LC, Arevalo-Pinzon G, Patarroyo ME, Patarroyo MA: Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene 2011, 474:22- 28.
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL: Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009, 122:280-288.
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL: Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009, 122:280-288.
Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, Tyler JS, Narum DL, Pierce SK, Boothroyd JC, et al: Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011, 108:13275-13280.
Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, Narum DL, Moch JK, Sun H, Haynes JD, et al: Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 2013, 4:2261.
Kato K, Mayer DC, Singh S, Reid M, Miller LH: Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A 2005, 102:5552-5557.
Hossain ME, Dhawan S, Mohmmed A: The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res 2012, 110:1711-1721.
Curtidor H, Patino LC, Arevalo-Pinzon G, Vanegas M, Patarroyo ME, Patarroyo MA: Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides 2014, 53:210-217.
Tonkin ML, Boulanger MJ: The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog 2015, 11:e1004539.
Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, et al: Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011, 9:9-20.
Arevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA: PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malar J 2011, 10:60.
Sinnis P, Coppi A: A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007, 56:171-178.
Miller LH, Baruch DI, Marsh K, Doumbo OK: The pathogenic basis of malaria. Nature 2002, 415:673-679.
White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM: Malaria. Lancet 2014, 383:723-735
Gaur D, Chitnis CE: Molecular interactions and signaling mechanisms during erythrocyte invasion by malaria parasites. Curr Opin Microbiol 2011, 14:422-428.
Hill AV: Vaccines against malaria. Philos Trans R Soc Lond B Biol Sci 2011, 366:2806- 2814.
Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T: Invasion of erythrocytes by malaria merozoites. Science 1975, 187:748-750.
Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG: Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010, 115:4559-4568.
Barnwell JW, Nichols ME, Rubinstein P: In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med 1989, 169:1795- 1802.
Adams JH, Blair PL, Kaneko O, Peterson DS: An expanding ebl family of Plasmodium falciparum. Trends Parasitol 2001, 17:297-299.
Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham WH, Triglia T, Gout A, Speed TP, Beeson JG, Healer J, Cowman AF: Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 2011, 79:1107-1117.
Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA: Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One 2012, 7:e30251.
Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC: Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005, 280:34245-34258.
Aikawa M, Miller LH, Johnson J, Rabbege J: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978, 77:72-82.
Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M: Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009, 5:e1000309.
Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ: The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011, 7:e1002007.
Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB, Penarete- Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M: Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 2014, 5:4098.
Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, Cho JS, Koh EG, Chu CS, Pukrittayakamee S, et al: Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 2015, 125:1314-1324.
Thomson-Luque R, Shaw Saliba K, Kocken CHM, Pasini EM: A Continuous, Long- Term Plasmodium vivax In Vitro Blood-Stage Culture: What Are We Missing? Trends Parasitol 2017, 33:921-924.
Chitnis CE, Sharma A: Targeting the Plasmodium vivax Duffy-binding protein. Trends Parasitol 2008, 24:29-34.
Galinski MR, Medina CC, Ingravallo P, Barnwell JW: A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 1992, 69:1213-1226.
Wilson MC, Trakarnsanga K, Heesom KJ, Cogan N, Green C, Toye AM, Parsons SF, Anstee DJ, Frayne J: Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics 2016, 15:1938-1946.
Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J, Neafsey DE, Yan G, Miller LH: Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci U S A 2016, 113:6271-6276.
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, et al: Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455:757-763.
Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA: Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J 2011, 10:314.
Moreno-Perez DA, Saldarriaga A, Patarroyo MA: Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J 2013, 12:165.
Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA: The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun 2008, 377:1113-1117.
Arevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA: Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J 2013, 12:356.
Arevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA: The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J 2015, 14:106.
Cibulskis RE, Alonso P, Aponte J, Aregawi M, Barrette A, Bergeron L, Fergus CA, Knox T, Lynch M, Patouillard E, et al: Malaria: Global progress 2000 - 2015 and future challenges. Infect Dis Poverty 2016, 5:61.
Djouaka R, Riveron JM, Yessoufou A, Tchigossou G, Akoton R, Irving H, Djegbe I, Moutairou K, Adeoti R, Tamo M, et al: Multiple insecticide resistance in an infected population of the malaria vector Anopheles funestus in Benin. Parasit Vectors 2016, 9:453.
Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, von Seidlein L: Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 2010, 8:272-280.
Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, et al: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 2002, 185:1155- 1164.
Kumar KA, Baxter P, Tarun AS, Kappe SH, Nussenzweig V: Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. PLoS One 2009, 4:e4480.
Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte- Bolmer M, van Schaijk B, Teelen K, Arens T, et al: Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 2009, 361:468-477.
Tuju J, Kamuyu G, Murungi LM, Osier FHA: Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017, 152:195-206.
Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X, et al: A phase 1 trial of PfCP2.9: an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008, 26:6864-6873.
Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS, Fay MP, Guindo MA, Kante O, et al: A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009, 27:7292-7298.
Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F: Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 2005, 73:8017-8026.
Arama C, Troye-Blomberg M: The path of malaria vaccine development: challenges and perspectives. J Intern Med 2014, 275:456-466.
Plebanski M, Locke E, Kazura JW, Coppel RL: Malaria vaccines: into a mirror, darkly? Trends Parasitol 2008, 24:532-536.
Goodman AL, Draper SJ: Blood-stage malaria vaccines - recent progress and future challenges. Ann Trop Med Parasitol 2010, 104:189-211.
Volkman SK, Hartl DL, Wirth DF, Nielsen KM, Choi M, Batalov S, Zhou Y, Plouffe D, Le Roch KG, Abagyan R, Winzeler EA: Excess polymorphisms in genes for membrane proteins in Plasmodium falciparum. Science 2002, 298:216-218.
Flanagan KL, Wilson KL, Plebanski M: Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Rev Vaccines 2016, 15:389-399.
Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, Kone AK, Traore K, Ouattara A, Djimde AA, et al: Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med 2007, 4:e93.
Ouattara A, Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV: Designing malaria vaccines to circumvent antigen variability. Vaccine 2015, 33:7506-7512.
Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, et al: Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2009, 1:2ra5.
Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Sagara I, Dicko A, Diemert DJ, Heppner DG, Jr., Stewart VA, Angov E, et al: Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin Trials 2006, 1:e34.
Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, et al: Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med 2015, 373:2025-2037.
Patarroyo ME, Patarroyo MA: Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008, 41:377-386.
Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA: Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol 2016, 18:57-78.
Calvo M, Guzman F, Perez E, Segura CH, Molano A, Patarroyo ME: Specific interactions of synthetic peptides derived from P. falciparum merozoite proteins with human red blood cells. Pept Res 1991, 4:324-333.
Curtidor H, Vanegas M, Alba MP, Patarroyo ME: Functional, immunological and threedimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. Curr Med Chem 2011, 18:4470-4502.
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME: Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev 2008, 108:3656-3705.
Berzofsky JA, Ahlers JD, Belyakov IM: Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 2001, 1:209-219.
Patarroyo ME, Bermudez A, Patarroyo MA: Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev 2011, 111:3459-3507.
Espejo F, Cubillos M, Salazar LM, Guzman F, Urquiza M, Ocampo M, Silva Y, Rodriguez R, Lioy E, Patarroyo ME: Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues. Angew Chem Int Ed Engl 2001, 40:4654-4657.
Guzman F, Jaramillo K, Salazar LM, Torres A, Rivera A, Patarroyo ME: 1H-NMR structures of the Plasmodium falciparum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 2002, 71:2773-2785.
Patarroyo ME, Patarroyo MA, Pabon L, Curtidor H, Poloche LA: Immune protectioninducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015, 33:7525-7537.
Rodriguez LE, Urquiza M, Ocampo M, Curtidor H, Suarez J, Garcia J, Vera R, Puentes A, Lopez R, Pinto M, et al: Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine 2002, 20:1331-1339.
Ocampo M, Vera R, Eduardo Rodriguez L, Curtidor H, Urquiza M, Suarez J, Garcia J, Puentes A, Lopez R, Trujillo M, et al: Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides 2002, 23:13-22.
Moreno-Perez DA, Ruiz JA, Patarroyo MA: Reticulocytes: Plasmodium vivax target cells. Biol Cell 2013, 105:251-260.
Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, Sriprawat K, Warter L, Koh EG, Malleret B, et al: A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood 2011, 118:e74-81.
Chu TTT, Sinha A, Malleret B, Suwanarusk R, Park JE, Naidu R, Das R, Dutta B, Ong ST, Verma NK, et al: Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 2018, 180:118-133.
Udomsangpetch R, Somsri S, Panichakul T, Chotivanich K, Sirichaisinthop J, Yang Z, Cui L, Sattabongkot J: Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int 2007, 56:65-69.
Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA: Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep 2017, 7:9616.
Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF: Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005, 309:1384-1387.
Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF: The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 2014, 289:25655-25669.
Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, Langowski J, Bujard H: Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem 2006, 281:31517-31527.
Ranjan R, Chugh M, Kumar S, Singh S, Kanodia S, Hossain MJ, Korde R, Grover A, Dhawan S, Chauhan VS, et al: Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res 2011, 10:680-691.
Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ: Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: implications for vaccine design. J Biol Chem 2013, 288:32106-32117.
Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH: Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog 2014, 10:e1003869.
Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF: Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem 2016, 291:7703-7715.
Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, Chishti AH, Oh SS: A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J Biol Chem 2004, 279:5765-5771.
Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH: Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 2015, 125:2704-2711.
Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, et al: Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480:534-537.
Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D: Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci U S A 2015, 112:1179-1184.
Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, Wright GJ: P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun 2017, 8:14333.
Beck JR, Chen AL, Kim EW, Bradley PJ: RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog 2014, 10:e1004025.
Guerin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M: RON4L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017, 7:17907.
Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J, Lebrun M, Boulanger MJ: Host cell invasion by apicomplexan parasites: insights from the costructure of AMA1 with a RON2 peptide. Science 2011, 333:463-467.
Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA: Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One 2017, 12:e0183198.
Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M: Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012, 8:e1002755.
Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, Long CA, Narum DL, Miller LH: Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 2014, 111:10311-10316.
Guerin A, Corrales RM, Parker ML, Lamarque MH, Jacot D, El Hajj H, Soldati-Favre D, Boulanger MJ, Lebrun M: Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol 2017, 2:1358-1366.
Giovannini D, Spath S, Lacroix C, Perazzi A, Bargieri D, Lagal V, Lebugle C, Combe A, Thiberge S, Baldacci P, et al: Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2011, 10:591-602.
Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC: A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015, 9:e0004264.
Petschnigg J, Snider J, Stagljar I: Interactive proteomics research technologies: recent applications and advances. Curr Opin Biotechnol 2011, 22:50-58.
Auerbach D, Thaminy S, Hottiger MO, Stagljar I: The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2002, 2:611-623.
Manzano-Roman R, Dasilva N, Diez P, Diaz-Martin V, Perez-Sanchez R, Orfao A, Fuentes M: Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013, 94:387-400.
Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-246.
Vasavada HA, Ganguly S, Germino FJ, Wang ZX, Weissman SM: A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc Natl Acad Sci U S A 1991, 88:10686-10690.
Miyawaki A, Tsien RY: Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 2000, 327:472-500.
Chan FK, Holmes KL: Flow cytometric analysis of fluorescence resonance energy transfer: a tool for high-throughput screening of molecular interactions in living cells. Methods Mol Biol 2004, 263:281-292.
Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A: An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 2006, 3:1013-1019.
Natsume T, Nakayama H, Isobe T: BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol 2001, 19:S28-33.
Kikuchi J, Furukawa Y, Hayashi N: Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass spectrometry. Mol Biotechnol 2003, 23:203-212.
Manzano-Roman R, Diaz-Martin V, Gonzalez-Gonzalez M, Matarraz S, Alvarez-Prado AF, LaBaer J, Orfao A, Perez-Sanchez R, Fuentes M: Self-assembled protein arrays from an Ornithodoros moubata salivary gland expression library. J Proteome Res 2012, 11:5972-5982.
He M, Taussig MJ: Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 2001, 29:E73- 73.
Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO: Protein microarray technology. Drug Discov Today 2002, 7:815-822.
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, et al: Global analysis of protein activities using proteome chips. Science 2001, 293:2101-2105.
Ramani SR, Tom I, Lewin-Koh N, Wranik B, Depalatis L, Zhang J, Eaton D, Gonzalez LC: A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem 2012, 420:127-138.
Natesan M, Ulrich RG: Protein microarrays and biomarkers of infectious disease. Int J Mol Sci 2010, 11:5165-5183.
Takeda A, Shimada H, Nakajima K, Imaseki H, Suzuki T, Asano T, Ochiai T, Isono K: Monitoring of p53 autoantibodies after resection of colorectal cancer: relationship to operative curability. Eur J Surg 2001, 167:50-53.
Weber MS, Hemmer B, Cepok S: The role of antibodies in multiple sclerosis. Biochim Biophys Acta 2011, 1812:239-245.
Nokoff NJ, Rewers M, Cree Green M: The interplay of autoimmunity and insulin resistance in type 1 diabetes. Discov Med 2012, 13:115-122.
Montor WR, Huang J, Hu Y, Hainsworth E, Lynch S, Kronish JW, Ordonez CL, Logvinenko T, Lory S, LaBaer J: Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 2009, 77:4877-4886.
Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, et al: Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 2010, 107:14703- 14708.
Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M, Jasinskas A, Nakajima- Sasaki R, John-Stewart G, Otieno P, Liang X, et al: Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 2011, 5:613-623
Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A: Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 2000, 278:123-131.
Qiu J, LaBaer J: Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform. Methods Enzymol 2011, 500:151-163.
Saul J, Petritis B, Sau S, Rauf F, Gaskin M, Ober-Reynolds B, Mineyev I, Magee M, Chaput J, Qiu J, LaBaer J: Development of a full-length human protein production pipeline. Protein Sci 2014, 23:1123-1135.
Grabski AC: Advances in preparation of biological extracts for protein purification. Methods Enzymol 2009, 463:285-303.
Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, et al: Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 2008, 5:1011-1017.
Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J: Self-assembling protein microarrays. Science 2004, 305:86-90.
Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD: Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 2006, 5:1658-1666.
Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J: Next-generation high-density self-assembling functional protein arrays. Nat Methods 2008, 5:535-538.
Yu X, Bian X, Throop A, Song L, Moral LD, Park J, Seiler C, Fiacco M, Steel J, Hunter P, et al: Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Theranostics 2014, 4:808-822.
Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP: Host-pathogen interaction profiling using selfassembling human protein arrays. J Proteome Res 2015, 14:1920-1936.
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/62453ad0-fc25-48ec-9f50-fc0a0a70a209/download
https://repository.urosario.edu.co/bitstreams/bc7c7d0f-599f-43f4-ab99-ea0afa83b9ca/download
https://repository.urosario.edu.co/bitstreams/346625cd-8650-4d06-a0a1-b51f03d7375c/download
https://repository.urosario.edu.co/bitstreams/77d481c3-7326-4bc5-b452-30e91aadc46f/download
bitstream.checksum.fl_str_mv 38fd1cc89b3cde8de85dcbde63fc7885
fab9d9ed61d64f6ac005dee3306ae77e
cc4bc23feb389a079944836b78a8da95
435093e981f8ccabcbca355d7bd0a721
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167430456410112
spelling Patarroyo, Manuel A.79653065600Fuentes García, Manuel3fa66c8b-f5f2-49db-87e6-8412af28f6ce600Fernández-Soto, Pedroec39620a-2cfa-42b2-b8b1-88a5fda77f85600Arévalo-Pinzón, GabrielaDoctor en Ciencias BiomédicasFull timeeca483d3-a229-42c8-8a6d-3b5e6f002e5b6002019-02-18T16:10:28Z2019-02-18T16:10:28Z2018-04-162018La malaria es una de las enfermedades tropicales transmitidas por vectores más importantes a nivel mundial, donde Plasmodium vivax representa una de las especies más ampliamente distribuidas, afectando ~13.8 millones de personas por año. Pese a ello, el progreso aparentemente lento de la infección y los niveles bajos de parasitemia en el humano, comparados a lo reportado en Plasmodium falciparum, han llevado a clasificar a la infección por P. vivax erróneamente como benigna. Esto, sumado a los retos experimentales que trae consigo el cultivo de este parásito, obstaculizan en gran medida el conocimiento a nivel biológico, celular y molecular, necesario para el desarrollo de métodos de control efectivos contra P. vivax. Hoy en día, se conoce que un inadecuado diagnóstico, el mal manejo terapéutico y/o el retraso en el tratamiento, pueden llevar a recaídas y estados de enfermedad grave, similares a los reportados para la malaria producida por P. falciparum, lo que impone retos en la búsqueda de nuevas alternativas específicas contra esta especie. Teniendo en cuenta la necesidad de identificar posibles blancos terapéuticos contra P. vivax, este trabajo se enfocó en estudiar interacciones del tipo receptor-ligando y proteína-proteína de moléculas de P. vivax localizadas en los organelos apicales de esquizontes intraeritrocíticos. Basados en estudios previos en P. falciparum y Toxoplasma gondii, donde se describe la importancia funcional de las proteínas localizadas en el cuello de las roptrias (RONs) -2, -4 y 5 y del antígeno apical de membrana 1 (AMA1), se caracterizó en P. vivax la unión de cada una de estas proteínas con reticulocitos humanos y se evaluó la capacidad de PvRON2 para establecer interacciones con las proteínas PvRON4, PvRON5 y PvAMA1. Para esto, inicialmente se caracterizó mediante herramientas bioinformáticas y experimentales la presencia de los genes pvron4 y pvron5 en el genoma y transcriptoma de esquizontes de la cepa Vivax Colombia Guaviare 1 (VCG-1) de P. vivax. Estos dos genes codifican proteínas de alto peso molecular que se expresan en el polo apical de esquizontes y co-localizan con proteínas presentes en las roptrias. Para evaluar la capacidad de interacción de las proteínas PvRON2, PvRON4, PvRON5 y PvAMA1 con receptores sobre la membrana de reticulocitos humanos, todas ellas fueron producidas de forma recombinante y purificadas mediante cromatografía de afinidad. Se encontró que la proteína recombinante PvRON5 se unió tanto a normocitos como a reticulocitos CD71+, con una marcada preferencia por reticulocitos humanos. Por su parte, las proteínas recombinantes que incluyen los dominios I y II de PvAMA-1 (PvAMA-DI-DII), la región central de la proteína PvRON2 (PvRON2-RI) y la región carboxi-terminal de PvRON4, interactúan específicamente con reticulocitos CD71+CD45-. Los estudios de competencia de unión con péptidos sintéticos que cubren las secuencias de las proteínas recombinantes mostraron que los péptidos 21270 (derivado del DI de PvAMA1), 40305 (de PvRON4) y 40595 (de PvRON2-RI) fueron capaces de inhibir la unión de las proteínas recombinantes a reticulocitos CD71+CD45-, lo que sugiere que estas secuencias peptídicas contienen parte de las propiedades de unión de cada una de las proteínas de las que derivan. Los tres péptidos se unen específicamente y con alta afinidad a eritrocitos con porcentajes de unión mayores al 2% (obtenidas de las curvas de unión específica), permitiendo catalogarlos como péptidos con alta capacidad de unión a eritrocitos (HABPs, del inglés High Activity Binding Peptides). La unión de las proteínas PvAMA1 y PvRON4 a eritrocitos humanos fue sensible al tratamiento de los eritrocitos con diferentes enzimas (tripsina, quimotripsina y/o neuraminidasa), sugiriendo que la naturaleza de los receptores para estas proteínas es de tipo proteico. Estos resultados destacan la función de adhesina de las proteínas evaluadas y revelan las regiones mínimas de interacción con la célula hospedera, que sumado a la expresión de estas proteínas en esquizontes intraeritrocíticos y su localización en organelos apicales, sugieren una fuerte participación de estas moléculas durante el proceso de invasión de los merozoitos de P. vivax a reticulocitos humanos. Finalmente, mediante resonancia de plasmones de superficie, se caracterizaron las interacciones entre la proteína PvRON2 con las proteínas PvRON4, PvRON5 y PvAMA1. Los análisis revelaron que la región carboxi-terminal de la proteína PvRON2 (PvRON2-RII) y PvRON2-RI interactúan específicamente y con alta afinidad con el dominio II y III de PvAMA1 (PvAMA-DII-DIII) y con una menor afinidad con las proteínas PvAMA-DI-DII, PvRON4 y PvRON5. Al modificar algunos residuos de la proteína PvAMA1, reportados en P. falciparum como críticos en la interacción RON2-AMA1, no se encontraron diferencias importantes en los valores de las velocidades de asociación (Kon), disociación (Koff) y en la constante de disociación de la interacción (kD). Esto sugiere que, si bien existen interacciones proteína-proteína (IPP) conservadas entre estos parásitos (Pv-Pf), cada parásito utiliza distintas regiones de las proteínas para interactuar, lo que resalta su capacidad para especializarse o restringirse para invadir un tipo de célula específica y pone de manifiesto aún más la necesidad de diseñar medidas de control específicas contra P. vivax.Malaria is one of the most important tropical diseases transmitted by vectors worldwide; Plasmodium vivax represents one of the most widely distributed species (affecting ~ 13.8 million people worldwide per year). Despite this, the apparently slow progress of infection and low parasitaemia levels in humans compared to those reported in Plasmodium falciparum have erroneously led to P. vivax infection being classified as benign. Added to this, the experimental challenges involved in culturing this parasite greatly hinder accumulating the biological, cellular and molecular knowledge necessary for developing effective control methods against P. vivax. It is known nowadays that unsuitable diagnosis, poor therapeutic management and/or delayed treatment can lead to relapses and severe disease states similar to those reported for P. falciparum malaria, thereby imposing challenges regarding the search for new, specific, alternative approaches to tackling this species. The present work has been focused on studying receptor-ligand and protein-protein interactions of P. vivax molecules located in intra-erythrocyte schizonts’ apical organelles regarding the need for identifying therapeutic targets against P. vivax. Protein interaction with human reticulocytes was characterised in P. vivax and PvRON2 ability to establish interactions with PvRON4, PvRON5 and PvAMA1 was evaluated, based on previous P. falciparum and Toxoplasma gondii studies, describing the functional importance of rhoptry neck proteins. Work began by using bioinformatics and experimental tools for predicting pvron4 and pvron5 genes in the P. vivax VCG-1 (Vivax Colombia Guaviare 1) strain’s genome and schizonts transcriptome. These two genes encode high molecular weight proteins which are expressed at schizonts’ apical poles and co-localise with proteins in the rhoptries. Such proteins were produced recombinantly and purified by affinity chromatography for evaluating PvRON2, PvRON4, PvRON5 and PvAMA1 ability to interact with receptors on human reticulocyte membrane. Recombinant PvRON5 bound to both CD71+ normocytes and reticulocytes, having a marked preference for human reticulocytes. PvAMA1 domains I and II (PvAMA-DI-DII), PvRON2 central region (PvRON2-RI) and PvRON4 carboxy-terminal region specifically interacted with CD71+CD45- reticulocytes. Competition studies with synthetic peptides covering recombinant protein sequences showed that PvAMA1-derived peptide 21270, PvRON4-derived 40305 and PvRON2-RI-derived 40595, were capable of inhibiting recombinant protein binding to CD71+CD45- reticulocytes, suggesting that these peptide sequences contained some of the evaluated proteins’ binding properties. The three peptides bound specifically and with high affinity to erythrocytes having higher (2%) binding percentages (obtained from specific binding curves), thereby allowing their classification as high erythrocyte binding capacity peptides (HABPs). PvAMA1 and PvRON4 binding to human erythrocytes was sensitive to erythrocytes treatment with different enzymes (trypsin, chymotrypsin and/or neuraminidase), suggesting the receptors’ protein type nature. These results highlighted the adhesin function of the proteins evaluated and revealed minimum host cell interaction regions suggesting these molecules’ active participation during P. vivax merozoite invasion of human reticulocytes (along with these proteins’ expression in intra-erythrocytic schizonts and location in apical organelles). Surface plasmon resonance was used for characterising PvRON2 interactions with PvRON4, PvRON5 and PvAMA1. This revealed that PvRON2-RI and carboxy-terminal regions (PvRON2-RII) specifically interacted and with great affinity with PvAMA1 domain II and III (PvAMA-DII-DIII) but with less affinity with PvAMA-DI-DII, PvRON4 and PvRON5. No significant differences were found in interaction association (Kon) or dissociation (Koff) rates or dissociation constant (kD) values when modifying some PvAMA1 residues reported as being critical in the P. falciparum RON2-AMA-1 interaction, suggesting that although conserved interactions between these parasites (Pv-Pf) have been observed, each parasite uses different regions to interact, thereby highlighting their ability to specialise or restrict themselves to invading a specific cell type and the need for designing specific control measures against P. vivax.2021-02-19 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-02-18Fundación Instituto de Inmunología de ColombiaColcienciasCentro de Investigación del Cáncer - Universidad de Salamancaapplication/pdfhttps://doi.org/10.48713/10336_19095 http://repository.urosario.edu.co/handle/10336/19095spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasDoctorado en Ciencias BiomédicasAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://purl.org/coar/access_right/c_abf2Organización Mundial de la Salud: Informe Mundial sobre Paludismo 2016. Organización Mundial de la Salud; 2017.Organización Mundial de la Salud: Informe Mundial sobre el Paludismo 2017. Organización Mundial de la Salud; 2017.Organización Panamericana de la Salud / Organización Mundial de la Salud: Alerta Epidemiológica: Aumento de casos de malaria. Organización Panamericana de la Salud / Organización Mundial de la Salud.; 2017.Guerra CA, Snow RW, Hay SI: Mapping the global extent of malaria in 2005. Trends Parasitol 2006, 22:353-358.Gupta H, Dhunputh P, Bhatt AN, Satyamoorthy K, Umakanth S: Cerebral malaria in a man with Plasmodium vivax mono-infection: a case report. Trop Doct 2016, 46:241- 245.Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA: Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009, 9:555-566.Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W: Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J 2014, 13:481.Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, Killick- Kendrick R, Wolf R, Sinden R, Koontz LC, Stanfill PS: Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg 1982, 31:1291-1293.Carlton JM, Sina BJ, Adams JH: Why is Plasmodium vivax a neglected tropical disease? PLoS Negl Trop Dis 2011, 5:e1160.Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, Baird JK: Key Knowledge Gaps for Plasmodium vivax Control and Elimination. Am J Trop Med Hyg 2016, 95:62-71Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, et al: Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 2001, 183:1653-1661.Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, et al: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147.Paing MM, Tolia NH: Multimeric assembly of host-pathogen adhesion complexes involved in apicomplexan invasion. PLoS Pathog 2014, 10:e1004120.Woodson SA: Macromolecular complexes: how RNA and protein get together. Curr Biol 1996, 6:23-25.Panichakul T, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Cui L, Udomsangpetch R: Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int J Parasitol 2007, 37:1551-1557.Noulin F, Borlon C, Van Den Abbeele J, D'Alessandro U, Erhart A: 1912-2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol 2013, 29:286-294.Pico de Coana Y, Rodriguez J, Guerrero E, Barrero C, Rodriguez R, Mendoza M, Patarroyo MA: A highly infective Plasmodium vivax strain adapted to Aotus monkeys: quantitative haematological and molecular determinations useful for P. vivax malaria vaccine development. Vaccine 2003, 21:3930-3937.Armistead JS, Adams JH: Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017.Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, Ginsburg H, Nosten F, Day NP, White NJ, et al: The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A 2008, 105:16290-16295.Patarroyo MA, Calderon D, Moreno-Perez DA: Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines 2012, 11:1249-1260.Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, et al: Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015, 1:367-379.Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L: Determination of the Plasmodium vivax schizont stage proteome. J Proteomics 2011, 74:1701-1710.Moreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA: Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics 2014, 113C:268- 280.Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM: Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018, 8:34.Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA: Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene 2011, 481:17-23.Mongui A, Angel DI, Moreno-Perez DA, Villarreal-Gonzalez S, Almonacid H, Vanegas M, Patarroyo MA: Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar J 2010, 9:283.Mongui A, Angel DI, Gallego G, Reyes C, Martinez P, Guhl F, Patarroyo MA: Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine 2009, 28:415-421Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003, 1:E5.Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NW, Harvey KL, Fowkes FJ, Barlow PN, Rayner JC, Wright GJ, et al: Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015, 11:e1004670.Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF: Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013, 29:228-236.Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, Tsuboi T, Torii M: Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 2009, 58:29-35.Curtidor H, Patino LC, Arevalo-Pinzon G, Patarroyo ME, Patarroyo MA: Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene 2011, 474:22- 28.Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL: Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009, 122:280-288.Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL: Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009, 122:280-288.Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, Tyler JS, Narum DL, Pierce SK, Boothroyd JC, et al: Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011, 108:13275-13280.Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, Narum DL, Moch JK, Sun H, Haynes JD, et al: Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 2013, 4:2261.Kato K, Mayer DC, Singh S, Reid M, Miller LH: Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A 2005, 102:5552-5557.Hossain ME, Dhawan S, Mohmmed A: The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res 2012, 110:1711-1721.Curtidor H, Patino LC, Arevalo-Pinzon G, Vanegas M, Patarroyo ME, Patarroyo MA: Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides 2014, 53:210-217.Tonkin ML, Boulanger MJ: The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog 2015, 11:e1004539.Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, et al: Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011, 9:9-20.Arevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA: PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malar J 2011, 10:60.Sinnis P, Coppi A: A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007, 56:171-178.Miller LH, Baruch DI, Marsh K, Doumbo OK: The pathogenic basis of malaria. Nature 2002, 415:673-679.White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM: Malaria. Lancet 2014, 383:723-735Gaur D, Chitnis CE: Molecular interactions and signaling mechanisms during erythrocyte invasion by malaria parasites. Curr Opin Microbiol 2011, 14:422-428.Hill AV: Vaccines against malaria. Philos Trans R Soc Lond B Biol Sci 2011, 366:2806- 2814.Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T: Invasion of erythrocytes by malaria merozoites. Science 1975, 187:748-750.Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG: Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010, 115:4559-4568.Barnwell JW, Nichols ME, Rubinstein P: In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med 1989, 169:1795- 1802.Adams JH, Blair PL, Kaneko O, Peterson DS: An expanding ebl family of Plasmodium falciparum. Trends Parasitol 2001, 17:297-299.Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham WH, Triglia T, Gout A, Speed TP, Beeson JG, Healer J, Cowman AF: Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 2011, 79:1107-1117.Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA: Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One 2012, 7:e30251.Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC: Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005, 280:34245-34258.Aikawa M, Miller LH, Johnson J, Rabbege J: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978, 77:72-82.Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M: Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009, 5:e1000309.Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ: The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011, 7:e1002007.Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB, Penarete- Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M: Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 2014, 5:4098.Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, Cho JS, Koh EG, Chu CS, Pukrittayakamee S, et al: Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 2015, 125:1314-1324.Thomson-Luque R, Shaw Saliba K, Kocken CHM, Pasini EM: A Continuous, Long- Term Plasmodium vivax In Vitro Blood-Stage Culture: What Are We Missing? Trends Parasitol 2017, 33:921-924.Chitnis CE, Sharma A: Targeting the Plasmodium vivax Duffy-binding protein. Trends Parasitol 2008, 24:29-34.Galinski MR, Medina CC, Ingravallo P, Barnwell JW: A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 1992, 69:1213-1226.Wilson MC, Trakarnsanga K, Heesom KJ, Cogan N, Green C, Toye AM, Parsons SF, Anstee DJ, Frayne J: Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics 2016, 15:1938-1946.Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J, Neafsey DE, Yan G, Miller LH: Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci U S A 2016, 113:6271-6276.Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, et al: Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455:757-763.Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA: Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J 2011, 10:314.Moreno-Perez DA, Saldarriaga A, Patarroyo MA: Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J 2013, 12:165.Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA: The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun 2008, 377:1113-1117.Arevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA: Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J 2013, 12:356.Arevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA: The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J 2015, 14:106.Cibulskis RE, Alonso P, Aponte J, Aregawi M, Barrette A, Bergeron L, Fergus CA, Knox T, Lynch M, Patouillard E, et al: Malaria: Global progress 2000 - 2015 and future challenges. Infect Dis Poverty 2016, 5:61.Djouaka R, Riveron JM, Yessoufou A, Tchigossou G, Akoton R, Irving H, Djegbe I, Moutairou K, Adeoti R, Tamo M, et al: Multiple insecticide resistance in an infected population of the malaria vector Anopheles funestus in Benin. Parasit Vectors 2016, 9:453.Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, von Seidlein L: Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 2010, 8:272-280.Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, et al: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 2002, 185:1155- 1164.Kumar KA, Baxter P, Tarun AS, Kappe SH, Nussenzweig V: Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. PLoS One 2009, 4:e4480.Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte- Bolmer M, van Schaijk B, Teelen K, Arens T, et al: Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 2009, 361:468-477.Tuju J, Kamuyu G, Murungi LM, Osier FHA: Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017, 152:195-206.Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X, et al: A phase 1 trial of PfCP2.9: an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008, 26:6864-6873.Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS, Fay MP, Guindo MA, Kante O, et al: A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009, 27:7292-7298.Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F: Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 2005, 73:8017-8026.Arama C, Troye-Blomberg M: The path of malaria vaccine development: challenges and perspectives. J Intern Med 2014, 275:456-466.Plebanski M, Locke E, Kazura JW, Coppel RL: Malaria vaccines: into a mirror, darkly? Trends Parasitol 2008, 24:532-536.Goodman AL, Draper SJ: Blood-stage malaria vaccines - recent progress and future challenges. Ann Trop Med Parasitol 2010, 104:189-211.Volkman SK, Hartl DL, Wirth DF, Nielsen KM, Choi M, Batalov S, Zhou Y, Plouffe D, Le Roch KG, Abagyan R, Winzeler EA: Excess polymorphisms in genes for membrane proteins in Plasmodium falciparum. Science 2002, 298:216-218.Flanagan KL, Wilson KL, Plebanski M: Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Rev Vaccines 2016, 15:389-399.Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, Kone AK, Traore K, Ouattara A, Djimde AA, et al: Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med 2007, 4:e93.Ouattara A, Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV: Designing malaria vaccines to circumvent antigen variability. Vaccine 2015, 33:7506-7512.Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, et al: Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2009, 1:2ra5.Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Sagara I, Dicko A, Diemert DJ, Heppner DG, Jr., Stewart VA, Angov E, et al: Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin Trials 2006, 1:e34.Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, et al: Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med 2015, 373:2025-2037.Patarroyo ME, Patarroyo MA: Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008, 41:377-386.Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA: Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol 2016, 18:57-78.Calvo M, Guzman F, Perez E, Segura CH, Molano A, Patarroyo ME: Specific interactions of synthetic peptides derived from P. falciparum merozoite proteins with human red blood cells. Pept Res 1991, 4:324-333.Curtidor H, Vanegas M, Alba MP, Patarroyo ME: Functional, immunological and threedimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. Curr Med Chem 2011, 18:4470-4502.Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME: Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev 2008, 108:3656-3705.Berzofsky JA, Ahlers JD, Belyakov IM: Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 2001, 1:209-219.Patarroyo ME, Bermudez A, Patarroyo MA: Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev 2011, 111:3459-3507.Espejo F, Cubillos M, Salazar LM, Guzman F, Urquiza M, Ocampo M, Silva Y, Rodriguez R, Lioy E, Patarroyo ME: Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues. Angew Chem Int Ed Engl 2001, 40:4654-4657.Guzman F, Jaramillo K, Salazar LM, Torres A, Rivera A, Patarroyo ME: 1H-NMR structures of the Plasmodium falciparum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 2002, 71:2773-2785.Patarroyo ME, Patarroyo MA, Pabon L, Curtidor H, Poloche LA: Immune protectioninducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015, 33:7525-7537.Rodriguez LE, Urquiza M, Ocampo M, Curtidor H, Suarez J, Garcia J, Vera R, Puentes A, Lopez R, Pinto M, et al: Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine 2002, 20:1331-1339.Ocampo M, Vera R, Eduardo Rodriguez L, Curtidor H, Urquiza M, Suarez J, Garcia J, Puentes A, Lopez R, Trujillo M, et al: Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides 2002, 23:13-22.Moreno-Perez DA, Ruiz JA, Patarroyo MA: Reticulocytes: Plasmodium vivax target cells. Biol Cell 2013, 105:251-260.Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, Sriprawat K, Warter L, Koh EG, Malleret B, et al: A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood 2011, 118:e74-81.Chu TTT, Sinha A, Malleret B, Suwanarusk R, Park JE, Naidu R, Das R, Dutta B, Ong ST, Verma NK, et al: Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 2018, 180:118-133.Udomsangpetch R, Somsri S, Panichakul T, Chotivanich K, Sirichaisinthop J, Yang Z, Cui L, Sattabongkot J: Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int 2007, 56:65-69.Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA: Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep 2017, 7:9616.Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF: Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005, 309:1384-1387.Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF: The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 2014, 289:25655-25669.Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, Langowski J, Bujard H: Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem 2006, 281:31517-31527.Ranjan R, Chugh M, Kumar S, Singh S, Kanodia S, Hossain MJ, Korde R, Grover A, Dhawan S, Chauhan VS, et al: Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res 2011, 10:680-691.Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ: Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: implications for vaccine design. J Biol Chem 2013, 288:32106-32117.Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH: Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog 2014, 10:e1003869.Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF: Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem 2016, 291:7703-7715.Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, Chishti AH, Oh SS: A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J Biol Chem 2004, 279:5765-5771.Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH: Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 2015, 125:2704-2711.Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, et al: Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480:534-537.Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D: Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci U S A 2015, 112:1179-1184.Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, Wright GJ: P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun 2017, 8:14333.Beck JR, Chen AL, Kim EW, Bradley PJ: RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog 2014, 10:e1004025.Guerin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M: RON4L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017, 7:17907.Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J, Lebrun M, Boulanger MJ: Host cell invasion by apicomplexan parasites: insights from the costructure of AMA1 with a RON2 peptide. Science 2011, 333:463-467.Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA: Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One 2017, 12:e0183198.Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M: Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012, 8:e1002755.Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, Long CA, Narum DL, Miller LH: Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 2014, 111:10311-10316.Guerin A, Corrales RM, Parker ML, Lamarque MH, Jacot D, El Hajj H, Soldati-Favre D, Boulanger MJ, Lebrun M: Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol 2017, 2:1358-1366.Giovannini D, Spath S, Lacroix C, Perazzi A, Bargieri D, Lagal V, Lebugle C, Combe A, Thiberge S, Baldacci P, et al: Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2011, 10:591-602.Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC: A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015, 9:e0004264.Petschnigg J, Snider J, Stagljar I: Interactive proteomics research technologies: recent applications and advances. Curr Opin Biotechnol 2011, 22:50-58.Auerbach D, Thaminy S, Hottiger MO, Stagljar I: The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2002, 2:611-623.Manzano-Roman R, Dasilva N, Diez P, Diaz-Martin V, Perez-Sanchez R, Orfao A, Fuentes M: Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013, 94:387-400.Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-246.Vasavada HA, Ganguly S, Germino FJ, Wang ZX, Weissman SM: A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc Natl Acad Sci U S A 1991, 88:10686-10690.Miyawaki A, Tsien RY: Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 2000, 327:472-500.Chan FK, Holmes KL: Flow cytometric analysis of fluorescence resonance energy transfer: a tool for high-throughput screening of molecular interactions in living cells. Methods Mol Biol 2004, 263:281-292.Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A: An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 2006, 3:1013-1019.Natsume T, Nakayama H, Isobe T: BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol 2001, 19:S28-33.Kikuchi J, Furukawa Y, Hayashi N: Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass spectrometry. Mol Biotechnol 2003, 23:203-212.Manzano-Roman R, Diaz-Martin V, Gonzalez-Gonzalez M, Matarraz S, Alvarez-Prado AF, LaBaer J, Orfao A, Perez-Sanchez R, Fuentes M: Self-assembled protein arrays from an Ornithodoros moubata salivary gland expression library. J Proteome Res 2012, 11:5972-5982.He M, Taussig MJ: Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 2001, 29:E73- 73.Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO: Protein microarray technology. Drug Discov Today 2002, 7:815-822.Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, et al: Global analysis of protein activities using proteome chips. Science 2001, 293:2101-2105.Ramani SR, Tom I, Lewin-Koh N, Wranik B, Depalatis L, Zhang J, Eaton D, Gonzalez LC: A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem 2012, 420:127-138.Natesan M, Ulrich RG: Protein microarrays and biomarkers of infectious disease. Int J Mol Sci 2010, 11:5165-5183.Takeda A, Shimada H, Nakajima K, Imaseki H, Suzuki T, Asano T, Ochiai T, Isono K: Monitoring of p53 autoantibodies after resection of colorectal cancer: relationship to operative curability. Eur J Surg 2001, 167:50-53.Weber MS, Hemmer B, Cepok S: The role of antibodies in multiple sclerosis. Biochim Biophys Acta 2011, 1812:239-245.Nokoff NJ, Rewers M, Cree Green M: The interplay of autoimmunity and insulin resistance in type 1 diabetes. Discov Med 2012, 13:115-122.Montor WR, Huang J, Hu Y, Hainsworth E, Lynch S, Kronish JW, Ordonez CL, Logvinenko T, Lory S, LaBaer J: Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 2009, 77:4877-4886.Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, et al: Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 2010, 107:14703- 14708.Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M, Jasinskas A, Nakajima- Sasaki R, John-Stewart G, Otieno P, Liang X, et al: Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 2011, 5:613-623Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A: Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 2000, 278:123-131.Qiu J, LaBaer J: Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform. Methods Enzymol 2011, 500:151-163.Saul J, Petritis B, Sau S, Rauf F, Gaskin M, Ober-Reynolds B, Mineyev I, Magee M, Chaput J, Qiu J, LaBaer J: Development of a full-length human protein production pipeline. Protein Sci 2014, 23:1123-1135.Grabski AC: Advances in preparation of biological extracts for protein purification. Methods Enzymol 2009, 463:285-303.Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, et al: Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 2008, 5:1011-1017.Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J: Self-assembling protein microarrays. Science 2004, 305:86-90.Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD: Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 2006, 5:1658-1666.Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J: Next-generation high-density self-assembling functional protein arrays. Nat Methods 2008, 5:535-538.Yu X, Bian X, Throop A, Song L, Moral LD, Park J, Seiler C, Fiacco M, Steel J, Hunter P, et al: Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Theranostics 2014, 4:808-822.Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP: Host-pathogen interaction profiling using selfassembling human protein arrays. J Proteome Res 2015, 14:1920-1936.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMalariaReceptor-ligandoProteína de las roptriasPlasmodium vivaxEnfermedades616600MalariaReceptor-ligand interactionsRhoptry neck proteinsPlasmodium vivaxMalariaPlasmodium vivaxEstudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1doctoralThesisTesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Escuela de Medicina y Ciencias de la SaludORIGINALDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdfDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdfDisertación doctoralapplication/pdf11044027https://repository.urosario.edu.co/bitstreams/62453ad0-fc25-48ec-9f50-fc0a0a70a209/download38fd1cc89b3cde8de85dcbde63fc7885MD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/bc7c7d0f-599f-43f4-ab99-ea0afa83b9ca/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52TEXTDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdf.txtDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdf.txtExtracted texttext/plain449627https://repository.urosario.edu.co/bitstreams/346625cd-8650-4d06-a0a1-b51f03d7375c/downloadcc4bc23feb389a079944836b78a8da95MD53THUMBNAILDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdf.jpgDocumento-Tesis-Gabriela-Arevalo-Pinzon-Version-sin-firmas.pdf.jpgGenerated Thumbnailimage/jpeg2925https://repository.urosario.edu.co/bitstreams/77d481c3-7326-4bc5-b452-30e91aadc46f/download435093e981f8ccabcbca355d7bd0a721MD5410336/19095oai:repository.urosario.edu.co:10336/190952021-02-19 01:01:01.344786https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=