Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services

Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26169
Acceso en línea:
https://doi.org/10.1109/MEMB.2007.364931
https://repository.urosario.edu.co/handle/10336/26169
Palabra clave:
Algorithm
Article
Biomedical engineering
Cluster analysis
Device
Health care quality
Health service
Mathematical analysis
Medical audit
Multiple linear regression analysis
Policy
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_81a1bd08e8c789a1e00da643bea2578c
oai_identifier_str oai:repository.urosario.edu.co:10336/26169
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling f2e876d6-94d1-4fd7-bc85-4194ad0925a6-16d5d6e50-8539-4cc6-8448-e6932c92d233-106fa6c8c-f0f1-43e8-8079-e872eb9b85df-12020-08-06T16:20:51Z2020-08-06T16:20:51Z2007Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for and related to hospital equipment maintenance and, thereafter, identifying and improving areas of concern. As a contributory measure, this research is focused on the analysis of quality and effectiveness of corrective (nonscheduled) maintenance tasks in the healthcare environment and the improvement of those processes. The two main objectives of this research are to build a predictor for a TAT indicator to estimate its values and to use a numeric clustering technique to find possible causes of undesirable values of TAT.application/pdfhttps://doi.org/10.1109/MEMB.2007.364931ISSN: 0739-5175EISSN: 1937-4186https://repository.urosario.edu.co/handle/10336/26169engJournal & Magazines65No. 360IEEE Engineering in Medicine and Biology MagazineVol. 26IEEE Engineering in Medicine and Biology Magazine, ISSN: 0739-5175 ; EISSN: 1937-4186, Vol.26, No.3 (2007); pp.60-65https://ieeexplore.ieee.org/document/4213103/authors#authorsRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Engineering in Medicine and Biology Magazineinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAlgorithmArticleBiomedical engineeringCluster analysisDeviceHealth care qualityHealth serviceMathematical analysisMedical auditMultiple linear regression analysisPolicyImproving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical servicesMejora de la eficiencia del mantenimiento correctivo en los departamentos de ingeniería clínica: técnicas de regresión lineal múltiple y agrupamiento para analizar la calidad y la eficacia de los servicios técnicosarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Cruz, Antonio MiguelBarr, CameronPunales, Elsa P. Pozo10336/26169oai:repository.urosario.edu.co:10336/261692021-06-03 00:50:27.785https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
dc.title.TranslatedTitle.spa.fl_str_mv Mejora de la eficiencia del mantenimiento correctivo en los departamentos de ingeniería clínica: técnicas de regresión lineal múltiple y agrupamiento para analizar la calidad y la eficacia de los servicios técnicos
title Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
spellingShingle Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
Algorithm
Article
Biomedical engineering
Cluster analysis
Device
Health care quality
Health service
Mathematical analysis
Medical audit
Multiple linear regression analysis
Policy
title_short Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
title_full Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
title_fullStr Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
title_full_unstemmed Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
title_sort Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
dc.subject.keyword.spa.fl_str_mv Algorithm
Article
Biomedical engineering
Cluster analysis
Device
Health care quality
Health service
Mathematical analysis
Medical audit
Multiple linear regression analysis
Policy
topic Algorithm
Article
Biomedical engineering
Cluster analysis
Device
Health care quality
Health service
Mathematical analysis
Medical audit
Multiple linear regression analysis
Policy
description Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for and related to hospital equipment maintenance and, thereafter, identifying and improving areas of concern. As a contributory measure, this research is focused on the analysis of quality and effectiveness of corrective (nonscheduled) maintenance tasks in the healthcare environment and the improvement of those processes. The two main objectives of this research are to build a predictor for a TAT indicator to estimate its values and to use a numeric clustering technique to find possible causes of undesirable values of TAT.
publishDate 2007
dc.date.created.spa.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2020-08-06T16:20:51Z
dc.date.available.none.fl_str_mv 2020-08-06T16:20:51Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/MEMB.2007.364931
dc.identifier.issn.none.fl_str_mv ISSN: 0739-5175
EISSN: 1937-4186
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26169
url https://doi.org/10.1109/MEMB.2007.364931
https://repository.urosario.edu.co/handle/10336/26169
identifier_str_mv ISSN: 0739-5175
EISSN: 1937-4186
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 65
dc.relation.citationIssue.none.fl_str_mv No. 3
dc.relation.citationStartPage.none.fl_str_mv 60
dc.relation.citationTitle.none.fl_str_mv IEEE Engineering in Medicine and Biology Magazine
dc.relation.citationVolume.none.fl_str_mv Vol. 26
dc.relation.ispartof.spa.fl_str_mv IEEE Engineering in Medicine and Biology Magazine, ISSN: 0739-5175 ; EISSN: 1937-4186, Vol.26, No.3 (2007); pp.60-65
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/4213103/authors#authors
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Journal & Magazines
dc.source.spa.fl_str_mv IEEE Engineering in Medicine and Biology Magazine
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167664825729024