Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services
Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2007
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26169
- Acceso en línea:
- https://doi.org/10.1109/MEMB.2007.364931
https://repository.urosario.edu.co/handle/10336/26169
- Palabra clave:
- Algorithm
Article
Biomedical engineering
Cluster analysis
Device
Health care quality
Health service
Mathematical analysis
Medical audit
Multiple linear regression analysis
Policy
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_81a1bd08e8c789a1e00da643bea2578c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/26169 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
f2e876d6-94d1-4fd7-bc85-4194ad0925a6-16d5d6e50-8539-4cc6-8448-e6932c92d233-106fa6c8c-f0f1-43e8-8079-e872eb9b85df-12020-08-06T16:20:51Z2020-08-06T16:20:51Z2007Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for and related to hospital equipment maintenance and, thereafter, identifying and improving areas of concern. As a contributory measure, this research is focused on the analysis of quality and effectiveness of corrective (nonscheduled) maintenance tasks in the healthcare environment and the improvement of those processes. The two main objectives of this research are to build a predictor for a TAT indicator to estimate its values and to use a numeric clustering technique to find possible causes of undesirable values of TAT.application/pdfhttps://doi.org/10.1109/MEMB.2007.364931ISSN: 0739-5175EISSN: 1937-4186https://repository.urosario.edu.co/handle/10336/26169engJournal & Magazines65No. 360IEEE Engineering in Medicine and Biology MagazineVol. 26IEEE Engineering in Medicine and Biology Magazine, ISSN: 0739-5175 ; EISSN: 1937-4186, Vol.26, No.3 (2007); pp.60-65https://ieeexplore.ieee.org/document/4213103/authors#authorsRestringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Engineering in Medicine and Biology Magazineinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAlgorithmArticleBiomedical engineeringCluster analysisDeviceHealth care qualityHealth serviceMathematical analysisMedical auditMultiple linear regression analysisPolicyImproving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical servicesMejora de la eficiencia del mantenimiento correctivo en los departamentos de ingeniería clínica: técnicas de regresión lineal múltiple y agrupamiento para analizar la calidad y la eficacia de los servicios técnicosarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Cruz, Antonio MiguelBarr, CameronPunales, Elsa P. Pozo10336/26169oai:repository.urosario.edu.co:10336/261692021-06-03 00:50:27.785https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
dc.title.TranslatedTitle.spa.fl_str_mv |
Mejora de la eficiencia del mantenimiento correctivo en los departamentos de ingeniería clínica: técnicas de regresión lineal múltiple y agrupamiento para analizar la calidad y la eficacia de los servicios técnicos |
title |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
spellingShingle |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services Algorithm Article Biomedical engineering Cluster analysis Device Health care quality Health service Mathematical analysis Medical audit Multiple linear regression analysis Policy |
title_short |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
title_full |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
title_fullStr |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
title_full_unstemmed |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
title_sort |
Improving corrective maintenace efficiency in clinical engineering departments - Multiple linear regression and clustering techniques for analyzing quality and effectiveness of technical services |
dc.subject.keyword.spa.fl_str_mv |
Algorithm Article Biomedical engineering Cluster analysis Device Health care quality Health service Mathematical analysis Medical audit Multiple linear regression analysis Policy |
topic |
Algorithm Article Biomedical engineering Cluster analysis Device Health care quality Health service Mathematical analysis Medical audit Multiple linear regression analysis Policy |
description |
Multiple linear regression and clustering techniques are tools that have been extensively applied in several financial, technical, and biomedical arenas, where vast quantities of data are produced and stored. These techniques show promise in analyzing the performance of departments responsible for and related to hospital equipment maintenance and, thereafter, identifying and improving areas of concern. As a contributory measure, this research is focused on the analysis of quality and effectiveness of corrective (nonscheduled) maintenance tasks in the healthcare environment and the improvement of those processes. The two main objectives of this research are to build a predictor for a TAT indicator to estimate its values and to use a numeric clustering technique to find possible causes of undesirable values of TAT. |
publishDate |
2007 |
dc.date.created.spa.fl_str_mv |
2007 |
dc.date.accessioned.none.fl_str_mv |
2020-08-06T16:20:51Z |
dc.date.available.none.fl_str_mv |
2020-08-06T16:20:51Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/MEMB.2007.364931 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0739-5175 EISSN: 1937-4186 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/26169 |
url |
https://doi.org/10.1109/MEMB.2007.364931 https://repository.urosario.edu.co/handle/10336/26169 |
identifier_str_mv |
ISSN: 0739-5175 EISSN: 1937-4186 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
65 |
dc.relation.citationIssue.none.fl_str_mv |
No. 3 |
dc.relation.citationStartPage.none.fl_str_mv |
60 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Engineering in Medicine and Biology Magazine |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 26 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Engineering in Medicine and Biology Magazine, ISSN: 0739-5175 ; EISSN: 1937-4186, Vol.26, No.3 (2007); pp.60-65 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/4213103/authors#authors |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Journal & Magazines |
dc.source.spa.fl_str_mv |
IEEE Engineering in Medicine and Biology Magazine |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167664825729024 |