Monitoring effective connectivity in the preterm brain: A graph approach to study maturation

In recent years, functional connectivity in the developmental science received increasing attention. Although it has been reported that the anatomical connectivity in the preterm brain develops dramatically during the last months of pregnancy, little is known about how functional and effective conne...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28151
Acceso en línea:
https://doi.org/10.1155/2017/9078541
https://repository.urosario.edu.co/handle/10336/28151
Palabra clave:
Functional connectivity
Increasing attention
Anatomical connectivity
Preterm brain
Rights
License
Abierto (Texto Completo)
id EDOCUR2_809e6e897aaaef28a623ef9afb65e981
oai_identifier_str oai:repository.urosario.edu.co:10336/28151
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 141395126000972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-12020-08-19T14:46:07Z2020-08-19T14:46:07Z2017-10-17In recent years, functional connectivity in the developmental science received increasing attention. Although it has been reported that the anatomical connectivity in the preterm brain develops dramatically during the last months of pregnancy, little is known about how functional and effective connectivity change with maturation. The present study investigated how effective connectivity in premature infants evolves. To assess it, we use EEG measurements and graph-theory methodologies. We recorded data from 25 preterm babies, who underwent long-EEG monitoring at least twice during their stay in the NICU. The recordings took place from 27 weeks postmenstrual age (PMA) until 42 weeks PMA. Results showed that the EEG-connectivity, assessed using graph-theory indices, moved from a small-world network to a random one, since the clustering coefficient increases and the path length decreases. This shift can be due to the development of the thalamocortical connections and long-range cortical connections. Based on the network indices, we developed different age-prediction models. The best result showed that it is possible to predict the age of the infant with a root mean-squared error () equal to 2.11 weeks. These results are similar to the ones reported in the literature for age prediction in preterm babies.application/pdfhttps://doi.org/10.1155/2017/9078541ISSN: 1076-2787EISSN: 1099-0526https://repository.urosario.edu.co/handle/10336/28151engJohn Wiley & SonsHindawi Publishing CorporationComplexityHindawi Complexity, ISSN: 1076-2787; EISSN: 1099-0526, (2017); 13 pp.https://www.hindawi.com/journals/complexity/2017/9078541/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Complexityinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFunctional connectivityIncreasing attentionAnatomical connectivityPreterm brainMonitoring effective connectivity in the preterm brain: A graph approach to study maturationMonitoreo de la conectividad efectiva en el cerebro prematuro: un enfoque gráfico para estudiar la maduraciónarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderJansen, KDereymaeker, ANaulaers, GVan Huffel, SLavanga, MDe Wel, OORIGINAL9078541.pdfapplication/pdf3307834https://repository.urosario.edu.co/bitstreams/901cc0c7-9efb-4b5a-8355-6238cab9e912/download27ab4c5abb09a16744445ebeeb8c0c6eMD51TEXT9078541.pdf.txt9078541.pdf.txtExtracted texttext/plain63370https://repository.urosario.edu.co/bitstreams/41846739-625d-4753-9625-dc8154d3e5da/download86db875f75cedbad36d94a79829383d2MD52THUMBNAIL9078541.pdf.jpg9078541.pdf.jpgGenerated Thumbnailimage/jpeg4239https://repository.urosario.edu.co/bitstreams/ff9c06f4-975b-47a3-bcc2-fd912d94e603/download7d7443e77221033d73f20008e5d2e41fMD5310336/28151oai:repository.urosario.edu.co:10336/281512021-06-03 00:51:12.791https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
dc.title.TranslatedTitle.spa.fl_str_mv Monitoreo de la conectividad efectiva en el cerebro prematuro: un enfoque gráfico para estudiar la maduración
title Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
spellingShingle Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
Functional connectivity
Increasing attention
Anatomical connectivity
Preterm brain
title_short Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
title_full Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
title_fullStr Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
title_full_unstemmed Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
title_sort Monitoring effective connectivity in the preterm brain: A graph approach to study maturation
dc.subject.keyword.spa.fl_str_mv Functional connectivity
Increasing attention
Anatomical connectivity
Preterm brain
topic Functional connectivity
Increasing attention
Anatomical connectivity
Preterm brain
description In recent years, functional connectivity in the developmental science received increasing attention. Although it has been reported that the anatomical connectivity in the preterm brain develops dramatically during the last months of pregnancy, little is known about how functional and effective connectivity change with maturation. The present study investigated how effective connectivity in premature infants evolves. To assess it, we use EEG measurements and graph-theory methodologies. We recorded data from 25 preterm babies, who underwent long-EEG monitoring at least twice during their stay in the NICU. The recordings took place from 27 weeks postmenstrual age (PMA) until 42 weeks PMA. Results showed that the EEG-connectivity, assessed using graph-theory indices, moved from a small-world network to a random one, since the clustering coefficient increases and the path length decreases. This shift can be due to the development of the thalamocortical connections and long-range cortical connections. Based on the network indices, we developed different age-prediction models. The best result showed that it is possible to predict the age of the infant with a root mean-squared error () equal to 2.11 weeks. These results are similar to the ones reported in the literature for age prediction in preterm babies.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-10-17
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:46:07Z
dc.date.available.none.fl_str_mv 2020-08-19T14:46:07Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1155/2017/9078541
dc.identifier.issn.none.fl_str_mv ISSN: 1076-2787
EISSN: 1099-0526
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28151
url https://doi.org/10.1155/2017/9078541
https://repository.urosario.edu.co/handle/10336/28151
identifier_str_mv ISSN: 1076-2787
EISSN: 1099-0526
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationTitle.none.fl_str_mv Complexity
dc.relation.ispartof.spa.fl_str_mv Hindawi Complexity, ISSN: 1076-2787; EISSN: 1099-0526, (2017); 13 pp.
dc.relation.uri.spa.fl_str_mv https://www.hindawi.com/journals/complexity/2017/9078541/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv John Wiley & Sons
Hindawi Publishing Corporation
dc.source.spa.fl_str_mv Complexity
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/901cc0c7-9efb-4b5a-8355-6238cab9e912/download
https://repository.urosario.edu.co/bitstreams/41846739-625d-4753-9625-dc8154d3e5da/download
https://repository.urosario.edu.co/bitstreams/ff9c06f4-975b-47a3-bcc2-fd912d94e603/download
bitstream.checksum.fl_str_mv 27ab4c5abb09a16744445ebeeb8c0c6e
86db875f75cedbad36d94a79829383d2
7d7443e77221033d73f20008e5d2e41f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167665065852928