Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama

En el presente estudio se describen Russula floriformis y R. symphoniae como dos nuevas especies hermanas de la subsección Russula Substriatinae del bosque montano presente en Colombia y Panamá asociadas con árboles Quercus spp. y Oreomunnea spp., respectivamente.Las condiciones ambientales en las d...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/20860
Acceso en línea:
https://doi.org/10.48713/10336_20860
https://repository.urosario.edu.co/handle/10336/20860
Palabra clave:
America
Bosque montano tropical
Coevolución
Diversidad
Ectomicorriza
Especies cripticas
Fagaceae
Juglandaceae
Botánica
Cryptic species
Coevolution
Diversity
Ectomycorrhiza
Tropical mountain forest
America
Fagaceae
Juglandaceae
Micología
Genética de hongos
Fisiología de los hongos
Russula-Variación (Biología)
Rights
License
Abierto (Texto Completo)
id EDOCUR2_80633538e0ec220dac0340e1da5ba96d
oai_identifier_str oai:repository.urosario.edu.co:10336/20860
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
dc.title.TranslatedTitle.spa.fl_str_mv Dos nuevas especies tropicales de Russula asociadas con Quercus muestran evidencia de diversificación en el Istmo de Panamá
title Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
spellingShingle Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
America
Bosque montano tropical
Coevolución
Diversidad
Ectomicorriza
Especies cripticas
Fagaceae
Juglandaceae
Botánica
Cryptic species
Coevolution
Diversity
Ectomycorrhiza
Tropical mountain forest
America
Fagaceae
Juglandaceae
Micología
Genética de hongos
Fisiología de los hongos
Russula-Variación (Biología)
title_short Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
title_full Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
title_fullStr Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
title_full_unstemmed Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
title_sort Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of Panama
dc.contributor.advisor.none.fl_str_mv Adamčík, Slavomir
Corrales Osorio, Adriana
dc.contributor.none.fl_str_mv Adamčíková, Katarína
Hampe, Felix
Caboň, Miroslav
Manz, Cathrin
Ovrebo, Clark
Pipenbring, Meike
dc.subject.spa.fl_str_mv America
Bosque montano tropical
Coevolución
Diversidad
Ectomicorriza
Especies cripticas
Fagaceae
Juglandaceae
topic America
Bosque montano tropical
Coevolución
Diversidad
Ectomicorriza
Especies cripticas
Fagaceae
Juglandaceae
Botánica
Cryptic species
Coevolution
Diversity
Ectomycorrhiza
Tropical mountain forest
America
Fagaceae
Juglandaceae
Micología
Genética de hongos
Fisiología de los hongos
Russula-Variación (Biología)
dc.subject.ddc.spa.fl_str_mv Botánica
dc.subject.keyword.spa.fl_str_mv Cryptic species
Coevolution
Diversity
Ectomycorrhiza
Tropical mountain forest
America
Fagaceae
Juglandaceae
dc.subject.lemb.spa.fl_str_mv Micología
Genética de hongos
Fisiología de los hongos
Russula-Variación (Biología)
description En el presente estudio se describen Russula floriformis y R. symphoniae como dos nuevas especies hermanas de la subsección Russula Substriatinae del bosque montano presente en Colombia y Panamá asociadas con árboles Quercus spp. y Oreomunnea spp., respectivamente.Las condiciones ambientales en las dos áreas de estudio son muy similares y una similitud de secuencia ITS superior al 99% con solo 3 posiciones diferentes indican que estas especies están estrechamente relacionadas y son casi crípticas. Observaciones detalladas de estructuras microscópicas y análisis de multi-locus revelaron más caracteres morfológicos y moleculares que distinguen las colecciones de Colombia y Panamá, resultadon en las especies R. floriformis y R. symphoniae. La distribución espacial y la proximidad filogenética de las especies de Russula y la distribución de Quercus, sugiere su especiación como resultado de la migración, la adaptación y el aislamiento climático a través del Istmo de Panamá de la especie durante los eventos del Plioceno y el Pleistoceno. Basado en esto, hipotetizamos que esto podría ser evidencia de coevolución entre Russula y Quercus. El análisis de los datos de secuencia ITS disponibles públicamente sugiere que hay más especies adaptadas localmente de este linaje en América Central y del Norte.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-12T19:42:35Z
dc.date.available.none.fl_str_mv 2020-02-12T19:42:35Z
dc.date.created.none.fl_str_mv 2020-01-24
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Trabajo de grado
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_20860
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/20860
url https://doi.org/10.48713/10336_20860
https://repository.urosario.edu.co/handle/10336/20860
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Biología
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Adamčík S, Jančovičová S, & Buyck B. 2018. The Russulas Described by Charles Horton Peck. Cryptogamie Mycologie, 39: 3–108.
Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG. Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälvläinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo C, Saba M, Taipale T, Verbeken A, Wisitrassameewong K, Buyck B. 2019. The quest for a globally comprehensible Russula language. Fungal Diversity.
Adamčík S, Slovák M, Eberhardt U, Ronikier A, Jairus T, Hampe F, Verbeken A (2016b) Molecular inference, multivariate morphometrics and ecological assessment are applied in concert to delimit species in the Russula clavipes complex. Mycologia 108:716–730. https://doi.org/10.3852/15-194
Andersen KM, Endara MJ, Turner BL, Dalling JW. 2012. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519–531
Ávila-de Navia SL, Estupiñan-Torres SM. 2013. Calidad sanitaria del agua del Parque Natural Chicaque. NOVA 11:45-51.
Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli, A. 2015. Biological evidence supports and early and complex emergence of the Isthmus of Panama. Proceeding of the National Academy of Sciences 112: 6110-6115.
Badotti F, Silva de Oliveira F, Garcia CF, Vaz AMB, Fonseca PLC, Nahum LA, Oliveira G, Góes-Neto A. 2017. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology 17: 42.
Bazzicalupo AL, Buyck B, Saar I, Vauras J, Carmean D, Berbee ML. 2017. Troubles with mycorrhizal mushroom identification where morphological differentiation lags behind barcode sequence divergence. Taxon 66(4):791–810.
Becerra G, Zak M. 2011. The Ectomycorrhizal Symbiosis in South America: Morphology, Colonization, and Diversity. In: Baptista P, Tavares RM, Lino-Neto T. 2011. Diversity and Biotechnology of Ectomycorrhizae. Berlin, Germany. p. 157–175.
Becerra A, Zak MR, Horton TR, Micolini J. 2005. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza. 15: 525–531.
Buyck B. 1989. Valeur taxonomique du bleu de crésyl pour le genre Russula. Bull Soc Mycol Fr 105:1–6
Buyck B. 1992. Checklist of tropical Russulae. Russulales News, Special Issue 1: 1-100
Buyck B, Adamčík S. 2011. Type Studies in Russula Subgenus Heterophyllidia from the Eastern United States. Cryptogamie, Mycologie, 32: 151–169.
Buyck B, Halling R. 2004. Two new Quercus-associated Russulas from Costa Rica and their relation to some very rare North American species. Cryptogamie, Mycologie, 25: 3–13.
Buyck B, Halling RE, Miller GM. 2003. The inventory of Russula in Costa Rica: discovery of two very rare North American species in montane oak forest. Bolletino del Gruppo Micologico G. Bresadola – Nuova Serie 46(3): 57–74
Buyck B, Zoller S, Hofstetter V. 2018. Walking the thin line… ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267–292.
Caboň M, Eberhardt U, Looney B, Hampe F, Kolařík M, Jančovičová S, Verbeken A, Adamčík S. 2017. New insights in Russula subsect. Rubrinae: phylogeny and the quest for synapomorphic characters. Mycological Progress, 16: 877–892.
Caboň M, Li GJ, Saba M, Kolařík M, Jančovičová S, Khalid AN, Moreau PA, Wen HA, Pfister DH, Adamčík S. 2019. Phylogenetic study documents different speciation mechanisms within the Russula globispora lineage in boreal and arctic environments of the Northern Hemisphere. IMA Fungus 10: 1–16
Cavelier J .1996. Fog interception in montane forests across the central cordillera of Panama. J Trop Ecol 12:357–369
Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1–17.
Corrales A, Henkel TW, Smith ME. 2018. Ectomycorrhizal associations in the tropics – biogeography, diversity patterns and ecosystem roles. New Phytologist, 220: 1076–1091.
Correa A, Galdames C, Stapf MS. 2004. Catalogue of vascular plants of Panama. Universidad de Panamá, Instituto de Investigaciones Tropicales
Del Olmo-Ruiz M, García-Sandoval R, Alcántara-Ayala O, Véliz M, Luna-Vega I. 2017. Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition. Biodiversity and Conservation 26: 1919–1942.
Diédhiou AG, Selosse MA, Galiana A, Diabaté M, Dreyfus B, Bâ AM, de Faria SM, Béna, G. 2010. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environmental Microbiology 12: 2219–2232.
Franco-Molano AE, Corrales A, Vasco-Palacios AM. 2010. Macrogundi of Colombia II. Checklist of the species of Agaricales, Boletales, Cantharellales and Russulales (Agaricomycetes, Basidiomycota). Actualidad Biologicas 32: 89-114.
García-Guzmán OM, Garibay-Orijel R, Hernández E, Arellano-Torres E, & Oyama K. 2017. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 27: 811–822.
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118.
González CE, Jarvis A, Palacio JD. 2006. Biogeography of the Colombian oak, Quercus humboldtii Bonpl: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad Del Cauca.10p.
Hall T. 2005. BioEdit: Biological Sequence Alignment Editor. http://www.mbio.ncsu.edu/bioedit/bioedit.html
Haug I, Weiß M, Homeier J, Oberwinkler F, Kottke I. 2005. Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytologist, 165: 923–936.
Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS. 2010. A molecular survey of ectomycorrhizal hyphae in a California Quercus–Pinus woodland. Mycorrhiza 20: 265–274
Herrera F, Manchester SR, Koll R, Jaramillo C. 2014. Fruits of Oreomunnea (Juglandaceae) in the early Miocene of Panama. In: Stevens WD, Montiel OM, Raven PH, Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year, 124–133. St Louis. Missouri Botanical Garden Press.
Hooghiemstra H. 2006. Immigration of Oak into Northern South America: A Paleo-Ecological Document. In: Kappelle M. Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p 17–28.
Jaramillo C. 2018. Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological Implications. In: Hoorn C, Perrigo A, Antonelli A, Mountains, Climate and Biodiversity. Hoboken, New Jersey. John Wiley & Sons. P 323-337.
Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software, version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772–780
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M. et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
Lanfear R., Calcott B., Ho S.Y., Guindon S., Lanfear R. et al. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695–1701
Looney BP, Meidl P, Piatek MJ, Miettinen O, Martin FM, Matheny PB, Labbé JL. 2018. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist 218: 54–66.
Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB. 2016. Into and out of the tropics: Global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology 25: 630–647.
Manz C. 2019. Diversity assessment of the ectomycorrhizal genus Russula in tropical montane forests in Masterarbeit.
Matheny PB .2005 Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20. doi:10.1016/j.ympev.2004.11.014
Miller M.A., Pfeiffer W., Schwartz T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.
Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationship of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49(2): 278–305. https://doi.org/10.1093/sysbio/49.2.278
Morehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L, Murphy PJ, Longcore E. 2003 – Multilocus sequences typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology 12:395–403
Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Köljalg U. 2006. Taxonomic reliability of DNA sequences in public sequences databases: A fungal perspective. PLoS ONE 1: e59
Nixon KC. 2006. Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests. In: Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p. 3–13.
Ondrušková E, Jánošíková Z, Kádasi-Horáková M, Koltay A, Ostrovský R, Pažitný J, Adamčíková K. 2017 – Distribution and characterization of Dothistroma needle blight pathogens on Pinus mugo in Slovakia. European Journal of Plant Pathology 148(2):283–294. https://link.springer.com/article/10.1007/s10658-016-1088-2
Pastirčáková K, Adamčíková K, Pastirčák M, Zach P, Galko J, Kováč M, Laco J. 2018 – Two blue-stain fungi colonizing Scots pine (Pinus sylvestris) trees infested by bark beetles in Slovakia, Central Europe. Biologia 73(11):1053–1066.
Rambaut A., Suchard M.A., Xie D., Drummond A.J. 2013. Tracer. Version 1.6. http://beast.bio.ed.ac.uk/software/tracer/
Rangel JO, Avella A. 2011. Oak forests of Quercus humboldtii in the Caribbean region and distribution patterns related with environmental factor in Colombia. Plant Biosystems 145: 186-198.
Richard F, Millot S, Gardes M, Selosse M-A. 2005. Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytologist 166: 1011–1023.
Rivera-Ospina D, Córdoba-García C. 1998. Guía ecológica Parque Natural Chicaque. Bogotá, Colombia, Jardín Botánico de Bogotá José Celestino Mutis.
Rodríguez-Correa F, Oyama K, MacGregor-Fors I, González-Rodríguez A. 2015. How are oaks distributed in the Neotropics? A perspective from species turnover, areas of endemism and climatic niches. International Journal of Plant Sciences 176: 222-231.
Romagnesi H (1967) Les Russules D’Europe et D’Afrique du Nord. Bordas, Paris Ronquist F., Teslenko M., van der Mark P., Avres D.L., Darling A. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice, across a large model space. Systematic Biology 61:539–542
Roy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, Frame D, Wartchow F, Neves MA. 2016. Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland White-sand Forests in Brazil and French Guiana. Biotropica 48: 90–100.
Roy M, Vasco-Palacios A, Geml J, Buyck B, Delgat L, Giachini A, Grebenc T, Harrower, E, Kuhar F, Magnano A, Rinaldi A, Shimann H, Selosse MA, Sulzbacher MA, Warthchow F, Neves, M. A. 2017. The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. New Phytologist 214: 920–923.
Silvestro D., Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organismal Diversity and Evolution 12:335–337
Smith ME, Henkel TW, Aime CM, Fremier AK, Vilgalys R. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist 192: 699–712.
Stamatakis A. 2008. The RAxML 7.0.4 manual. https://web.natur.cuni.cz/~vlada/moltax/RAxML-Manual.7.0.4.pdf
Vasco-Palacios AM, Franco-Molano AE. 2013. Diversity of Colombian macrofungi (Ascomycota-Basidiomycota). Mycotaxon. 121:499
Wang J, Buyck B, Wang XH, Bau T. 2019. Visiting Russula (Russulaceae, Russulales) with samples from southwestern China finds one new subsection of R. subg. Heterophyllidia with two new species. Mycological Progress 18: 771–784.
Wang Q, He XH, Guo L-D. 2012. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza 22: 461–470
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322
Wu Q, Mueller GM, Ovrebo CL. 1997. An index to Genera, Species and Infraspecific Taxa of Basidiomycete Fungi described by Rolf Singer. In: Mueller GM, Wu Q (eds) Mycological contributions of Rolf Singer: Field Itinerary, Index to New Taxa, and List of Publications. Fieldiana, Field Museam of Natural History, Chicago, Illinois, pp 90-93
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.
Quercus L. in GBIF Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/1605e8c7-18e9-4f10-93ad-e895229711cd/download
https://repository.urosario.edu.co/bitstreams/a534f9e1-f5b3-48bc-99eb-3de0aba2b10c/download
https://repository.urosario.edu.co/bitstreams/6a92ee3d-9c40-4d01-b396-67cf630f6248/download
https://repository.urosario.edu.co/bitstreams/24248777-42ec-4070-b9fd-342a12d73593/download
https://repository.urosario.edu.co/bitstreams/ea78a59b-7346-4720-9946-bcebe699a07f/download
https://repository.urosario.edu.co/bitstreams/61e0a3b9-b5b7-42da-beea-84c15c84edd8/download
https://repository.urosario.edu.co/bitstreams/7f2a600f-4273-4fa1-b375-8f659f474291/download
https://repository.urosario.edu.co/bitstreams/0670bd46-61bc-42fa-b546-17d00cf34a65/download
https://repository.urosario.edu.co/bitstreams/29d976d6-8b8b-4fef-b685-2345b9470276/download
https://repository.urosario.edu.co/bitstreams/e3924a70-975b-46e9-9ec4-bff454905a9c/download
bitstream.checksum.fl_str_mv bcb4e778c53a22eedff43ffa59ffe1a7
ee7041b920aacae3c98422c1f6521740
8345c6ed2de7d23a165d51f8ddf746d4
fab9d9ed61d64f6ac005dee3306ae77e
2aa163133abe7b0e2f9b0fd4f6d6649d
2ea3b488bfa7ea0ce3e71269d597a761
dcf5a302ebbc11d69d1259e5eccc6bf7
55eb617358661ddcd814582dfcd54722
6e239abff68093b44fa755daa0156dd5
028ee1bf523cbe6969187f38ff526d41
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167634870009856
spelling Adamčíková, KatarínaHampe, FelixCaboň, MiroslavManz, CathrinOvrebo, ClarkPipenbring, MeikeAdamčík, Slavomir06de3a4e-e6ff-45d1-bd2f-c8b80333fc32-1Corrales Osorio, Adriana43260206600Vera Castellanos, MichelleBiólogoFull time5692445e-69fa-4c55-b154-111386ec5baa6002020-02-12T19:42:35Z2020-02-12T19:42:35Z2020-01-24En el presente estudio se describen Russula floriformis y R. symphoniae como dos nuevas especies hermanas de la subsección Russula Substriatinae del bosque montano presente en Colombia y Panamá asociadas con árboles Quercus spp. y Oreomunnea spp., respectivamente.Las condiciones ambientales en las dos áreas de estudio son muy similares y una similitud de secuencia ITS superior al 99% con solo 3 posiciones diferentes indican que estas especies están estrechamente relacionadas y son casi crípticas. Observaciones detalladas de estructuras microscópicas y análisis de multi-locus revelaron más caracteres morfológicos y moleculares que distinguen las colecciones de Colombia y Panamá, resultadon en las especies R. floriformis y R. symphoniae. La distribución espacial y la proximidad filogenética de las especies de Russula y la distribución de Quercus, sugiere su especiación como resultado de la migración, la adaptación y el aislamiento climático a través del Istmo de Panamá de la especie durante los eventos del Plioceno y el Pleistoceno. Basado en esto, hipotetizamos que esto podría ser evidencia de coevolución entre Russula y Quercus. El análisis de los datos de secuencia ITS disponibles públicamente sugiere que hay más especies adaptadas localmente de este linaje en América Central y del Norte.Russula floriformis and R. symphoniae are described as two new sister species of Russula subsection Substriatinae from montane forest of Colombia and Panama and associated with Quercus and Oreomunnea trees. Very similar field environmental conditions and an ITS sequence similarity higher than 99% with only 3 different positions indicate that these species are closely related and nearly cryptic. Detailed observations of microscopic structures and analyses of more DNA loci revealed more morphological and molecular characters distinguishing collections of R. floriformis from Colombia and R. symphoniae from Panama. Spatial distribution and phylogenetic proximity of Russula species and their ectomycorrhizal host Quercus tree suggests their speciation as a result of migration, adaptation and climatic isolation across the Panama Isthmus of their host tree during the Pliocene and Pleistocene events. Then we hypothesize that this could be evidence of coevolution between Russula and Quercus. Analysis of publicly available ITS sequence data suggests that there are more locally adapted species of this lineage in Central and North America.2022-02-13 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2022-02-12International Association for Plant TaxonomySlovak Academy of Scienceapplication/pdfhttps://doi.org/10.48713/10336_20860 https://repository.urosario.edu.co/handle/10336/20860engUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_abf2Adamčík S, Jančovičová S, & Buyck B. 2018. The Russulas Described by Charles Horton Peck. Cryptogamie Mycologie, 39: 3–108.Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG. Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälvläinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo C, Saba M, Taipale T, Verbeken A, Wisitrassameewong K, Buyck B. 2019. The quest for a globally comprehensible Russula language. Fungal Diversity.Adamčík S, Slovák M, Eberhardt U, Ronikier A, Jairus T, Hampe F, Verbeken A (2016b) Molecular inference, multivariate morphometrics and ecological assessment are applied in concert to delimit species in the Russula clavipes complex. Mycologia 108:716–730. https://doi.org/10.3852/15-194Andersen KM, Endara MJ, Turner BL, Dalling JW. 2012. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519–531Ávila-de Navia SL, Estupiñan-Torres SM. 2013. Calidad sanitaria del agua del Parque Natural Chicaque. NOVA 11:45-51.Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli, A. 2015. Biological evidence supports and early and complex emergence of the Isthmus of Panama. Proceeding of the National Academy of Sciences 112: 6110-6115.Badotti F, Silva de Oliveira F, Garcia CF, Vaz AMB, Fonseca PLC, Nahum LA, Oliveira G, Góes-Neto A. 2017. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology 17: 42.Bazzicalupo AL, Buyck B, Saar I, Vauras J, Carmean D, Berbee ML. 2017. Troubles with mycorrhizal mushroom identification where morphological differentiation lags behind barcode sequence divergence. Taxon 66(4):791–810.Becerra G, Zak M. 2011. The Ectomycorrhizal Symbiosis in South America: Morphology, Colonization, and Diversity. In: Baptista P, Tavares RM, Lino-Neto T. 2011. Diversity and Biotechnology of Ectomycorrhizae. Berlin, Germany. p. 157–175.Becerra A, Zak MR, Horton TR, Micolini J. 2005. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza. 15: 525–531.Buyck B. 1989. Valeur taxonomique du bleu de crésyl pour le genre Russula. Bull Soc Mycol Fr 105:1–6Buyck B. 1992. Checklist of tropical Russulae. Russulales News, Special Issue 1: 1-100Buyck B, Adamčík S. 2011. Type Studies in Russula Subgenus Heterophyllidia from the Eastern United States. Cryptogamie, Mycologie, 32: 151–169.Buyck B, Halling R. 2004. Two new Quercus-associated Russulas from Costa Rica and their relation to some very rare North American species. Cryptogamie, Mycologie, 25: 3–13.Buyck B, Halling RE, Miller GM. 2003. The inventory of Russula in Costa Rica: discovery of two very rare North American species in montane oak forest. Bolletino del Gruppo Micologico G. Bresadola – Nuova Serie 46(3): 57–74Buyck B, Zoller S, Hofstetter V. 2018. Walking the thin line… ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267–292.Caboň M, Eberhardt U, Looney B, Hampe F, Kolařík M, Jančovičová S, Verbeken A, Adamčík S. 2017. New insights in Russula subsect. Rubrinae: phylogeny and the quest for synapomorphic characters. Mycological Progress, 16: 877–892.Caboň M, Li GJ, Saba M, Kolařík M, Jančovičová S, Khalid AN, Moreau PA, Wen HA, Pfister DH, Adamčík S. 2019. Phylogenetic study documents different speciation mechanisms within the Russula globispora lineage in boreal and arctic environments of the Northern Hemisphere. IMA Fungus 10: 1–16Cavelier J .1996. Fog interception in montane forests across the central cordillera of Panama. J Trop Ecol 12:357–369Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1–17.Corrales A, Henkel TW, Smith ME. 2018. Ectomycorrhizal associations in the tropics – biogeography, diversity patterns and ecosystem roles. New Phytologist, 220: 1076–1091.Correa A, Galdames C, Stapf MS. 2004. Catalogue of vascular plants of Panama. Universidad de Panamá, Instituto de Investigaciones TropicalesDel Olmo-Ruiz M, García-Sandoval R, Alcántara-Ayala O, Véliz M, Luna-Vega I. 2017. Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition. Biodiversity and Conservation 26: 1919–1942.Diédhiou AG, Selosse MA, Galiana A, Diabaté M, Dreyfus B, Bâ AM, de Faria SM, Béna, G. 2010. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environmental Microbiology 12: 2219–2232.Franco-Molano AE, Corrales A, Vasco-Palacios AM. 2010. Macrogundi of Colombia II. Checklist of the species of Agaricales, Boletales, Cantharellales and Russulales (Agaricomycetes, Basidiomycota). Actualidad Biologicas 32: 89-114.García-Guzmán OM, Garibay-Orijel R, Hernández E, Arellano-Torres E, & Oyama K. 2017. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 27: 811–822.Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118.González CE, Jarvis A, Palacio JD. 2006. Biogeography of the Colombian oak, Quercus humboldtii Bonpl: geographical distribution and their climatic adaptation. International Centre for Tropical Agriculture (CIAT)/Museo de Historia Natural, Universidad Del Cauca.10p.Hall T. 2005. BioEdit: Biological Sequence Alignment Editor. http://www.mbio.ncsu.edu/bioedit/bioedit.htmlHaug I, Weiß M, Homeier J, Oberwinkler F, Kottke I. 2005. Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytologist, 165: 923–936.Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS. 2010. A molecular survey of ectomycorrhizal hyphae in a California Quercus–Pinus woodland. Mycorrhiza 20: 265–274Herrera F, Manchester SR, Koll R, Jaramillo C. 2014. Fruits of Oreomunnea (Juglandaceae) in the early Miocene of Panama. In: Stevens WD, Montiel OM, Raven PH, Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year, 124–133. St Louis. Missouri Botanical Garden Press.Hooghiemstra H. 2006. Immigration of Oak into Northern South America: A Paleo-Ecological Document. In: Kappelle M. Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p 17–28.Jaramillo C. 2018. Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological Implications. In: Hoorn C, Perrigo A, Antonelli A, Mountains, Climate and Biodiversity. Hoboken, New Jersey. John Wiley & Sons. P 323-337.Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software, version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772–780Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M. et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649Lanfear R., Calcott B., Ho S.Y., Guindon S., Lanfear R. et al. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695–1701Looney BP, Meidl P, Piatek MJ, Miettinen O, Martin FM, Matheny PB, Labbé JL. 2018. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist 218: 54–66.Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB. 2016. Into and out of the tropics: Global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology 25: 630–647.Manz C. 2019. Diversity assessment of the ectomycorrhizal genus Russula in tropical montane forests in Masterarbeit.Matheny PB .2005 Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20. doi:10.1016/j.ympev.2004.11.014Miller M.A., Pfeiffer W., Schwartz T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationship of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49(2): 278–305. https://doi.org/10.1093/sysbio/49.2.278Morehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L, Murphy PJ, Longcore E. 2003 – Multilocus sequences typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology 12:395–403Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Köljalg U. 2006. Taxonomic reliability of DNA sequences in public sequences databases: A fungal perspective. PLoS ONE 1: e59Nixon KC. 2006. Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests. In: Ecology and Conservation of Neotropical Montane Oak Forests. Berlin, Germany. Springer. p. 3–13.Ondrušková E, Jánošíková Z, Kádasi-Horáková M, Koltay A, Ostrovský R, Pažitný J, Adamčíková K. 2017 – Distribution and characterization of Dothistroma needle blight pathogens on Pinus mugo in Slovakia. European Journal of Plant Pathology 148(2):283–294. https://link.springer.com/article/10.1007/s10658-016-1088-2Pastirčáková K, Adamčíková K, Pastirčák M, Zach P, Galko J, Kováč M, Laco J. 2018 – Two blue-stain fungi colonizing Scots pine (Pinus sylvestris) trees infested by bark beetles in Slovakia, Central Europe. Biologia 73(11):1053–1066.Rambaut A., Suchard M.A., Xie D., Drummond A.J. 2013. Tracer. Version 1.6. http://beast.bio.ed.ac.uk/software/tracer/Rangel JO, Avella A. 2011. Oak forests of Quercus humboldtii in the Caribbean region and distribution patterns related with environmental factor in Colombia. Plant Biosystems 145: 186-198.Richard F, Millot S, Gardes M, Selosse M-A. 2005. Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytologist 166: 1011–1023.Rivera-Ospina D, Córdoba-García C. 1998. Guía ecológica Parque Natural Chicaque. Bogotá, Colombia, Jardín Botánico de Bogotá José Celestino Mutis.Rodríguez-Correa F, Oyama K, MacGregor-Fors I, González-Rodríguez A. 2015. How are oaks distributed in the Neotropics? A perspective from species turnover, areas of endemism and climatic niches. International Journal of Plant Sciences 176: 222-231.Romagnesi H (1967) Les Russules D’Europe et D’Afrique du Nord. Bordas, Paris Ronquist F., Teslenko M., van der Mark P., Avres D.L., Darling A. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice, across a large model space. Systematic Biology 61:539–542Roy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, Frame D, Wartchow F, Neves MA. 2016. Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland White-sand Forests in Brazil and French Guiana. Biotropica 48: 90–100.Roy M, Vasco-Palacios A, Geml J, Buyck B, Delgat L, Giachini A, Grebenc T, Harrower, E, Kuhar F, Magnano A, Rinaldi A, Shimann H, Selosse MA, Sulzbacher MA, Warthchow F, Neves, M. A. 2017. The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. New Phytologist 214: 920–923.Silvestro D., Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organismal Diversity and Evolution 12:335–337Smith ME, Henkel TW, Aime CM, Fremier AK, Vilgalys R. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist 192: 699–712.Stamatakis A. 2008. The RAxML 7.0.4 manual. https://web.natur.cuni.cz/~vlada/moltax/RAxML-Manual.7.0.4.pdfVasco-Palacios AM, Franco-Molano AE. 2013. Diversity of Colombian macrofungi (Ascomycota-Basidiomycota). Mycotaxon. 121:499Wang J, Buyck B, Wang XH, Bau T. 2019. Visiting Russula (Russulaceae, Russulales) with samples from southwestern China finds one new subsection of R. subg. Heterophyllidia with two new species. Mycological Progress 18: 771–784.Wang Q, He XH, Guo L-D. 2012. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza 22: 461–470White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Wu Q, Mueller GM, Ovrebo CL. 1997. An index to Genera, Species and Infraspecific Taxa of Basidiomycete Fungi described by Rolf Singer. In: Mueller GM, Wu Q (eds) Mycological contributions of Rolf Singer: Field Itinerary, Index to New Taxa, and List of Publications. Fieldiana, Field Museam of Natural History, Chicago, Illinois, pp 90-93Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.Quercus L. in GBIF Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.orginstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAmericaBosque montano tropicalCoevoluciónDiversidadEctomicorrizaEspecies cripticasFagaceaeJuglandaceaeBotánica581600Cryptic speciesCoevolutionDiversityEctomycorrhizaTropical mountain forestAmericaFagaceaeJuglandaceaeMicologíaGenética de hongosFisiología de los hongosRussula-Variación (Biología)Two new tropical Russula species associated with Quercus show evidence of diversification across the Isthmus of PanamaDos nuevas especies tropicales de Russula asociadas con Quercus muestran evidencia de diversificación en el Istmo de PanamábachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALSupplementary material_1.pdfSupplementary material_1.pdfMaterial Suplementario 1application/pdf36215https://repository.urosario.edu.co/bitstreams/1605e8c7-18e9-4f10-93ad-e895229711cd/downloadbcb4e778c53a22eedff43ffa59ffe1a7MD52Supplementary material_2.pdfSupplementary material_2.pdfMaterial suplementario 2application/pdf128445https://repository.urosario.edu.co/bitstreams/a534f9e1-f5b3-48bc-99eb-3de0aba2b10c/downloadee7041b920aacae3c98422c1f6521740MD53Documento Tesis.pdfDocumento Tesis.pdfArticulo principalapplication/pdf2564138https://repository.urosario.edu.co/bitstreams/6a92ee3d-9c40-4d01-b396-67cf630f6248/download8345c6ed2de7d23a165d51f8ddf746d4MD54LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/24248777-42ec-4070-b9fd-342a12d73593/downloadfab9d9ed61d64f6ac005dee3306ae77eMD55TEXTSupplementary material_1.pdf.txtSupplementary material_1.pdf.txtExtracted texttext/plain2148https://repository.urosario.edu.co/bitstreams/ea78a59b-7346-4720-9946-bcebe699a07f/download2aa163133abe7b0e2f9b0fd4f6d6649dMD56Supplementary material_2.pdf.txtSupplementary material_2.pdf.txtExtracted texttext/plain11672https://repository.urosario.edu.co/bitstreams/61e0a3b9-b5b7-42da-beea-84c15c84edd8/download2ea3b488bfa7ea0ce3e71269d597a761MD58Documento Tesis.pdf.txtDocumento Tesis.pdf.txtExtracted texttext/plain61503https://repository.urosario.edu.co/bitstreams/7f2a600f-4273-4fa1-b375-8f659f474291/downloaddcf5a302ebbc11d69d1259e5eccc6bf7MD510THUMBNAILSupplementary material_1.pdf.jpgSupplementary material_1.pdf.jpgGenerated Thumbnailimage/jpeg3138https://repository.urosario.edu.co/bitstreams/0670bd46-61bc-42fa-b546-17d00cf34a65/download55eb617358661ddcd814582dfcd54722MD57Supplementary material_2.pdf.jpgSupplementary material_2.pdf.jpgGenerated Thumbnailimage/jpeg4355https://repository.urosario.edu.co/bitstreams/29d976d6-8b8b-4fef-b685-2345b9470276/download6e239abff68093b44fa755daa0156dd5MD59Documento Tesis.pdf.jpgDocumento Tesis.pdf.jpgGenerated Thumbnailimage/jpeg2949https://repository.urosario.edu.co/bitstreams/e3924a70-975b-46e9-9ec4-bff454905a9c/download028ee1bf523cbe6969187f38ff526d41MD51110336/20860oai:repository.urosario.edu.co:10336/208602022-02-13 01:01:08.282135https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=