p < 0,05 ¿Criterio mágico para resolver cualquier problema o leyenda urbana?

Las Pruebas de Hipótesis son el procedimiento de análisis más conocido por los investigadores y utilizado en las revistas científicas pero, a su vez, ellas han sido fuertemente criticadas, su uso ha sido cuestionado y restringido en algunos casos por las inconsistencias observadas en su aplicación....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/24922
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/24922
Palabra clave:
Pruebas de Hipótesis de Neyman-Pearson
Pruebas de Significación de Fisher
Pruebas de Hipótesis Bayesianas
Normas de Vancouver
Valores P
Hipótesis nada
Neyman-Pearson's hypothesis tests
Fisher's significance tests
Bayesian hypothesis tests
Vancouver norms
P-value
null-hypothesis
Rights
License
Abierto (Texto Completo)
Description
Summary:Las Pruebas de Hipótesis son el procedimiento de análisis más conocido por los investigadores y utilizado en las revistas científicas pero, a su vez, ellas han sido fuertemente criticadas, su uso ha sido cuestionado y restringido en algunos casos por las inconsistencias observadas en su aplicación. Este problema se analiza, en este artículo, tomando como punto de partida los Fundamentos de la Metodología Estadística y los diferentes enfoques que históricamente se han desarrollado para abordar el problema del análisis de las Hipótesis Estadísticas. Resaltándose un punto poco conocido por algunos: el carácter aleatorio de los valores P. Se presentan los fundamentos de las soluciones de Fisher, Neyman-Pearson y Bayesiana y a partir de ellas se identifican las inconsistencias del procedimiento de conducta que indica identificar un valor P, compararlo con el valor del error de tipo I -que usualmente es considerado como 0,05- y a partir de ahí decidir las conclusiones del análisis. Adicionalmente se identifican recomendaciones sobre cómo proceder en un problema, así como los retos a enfrentar, en lo docente y en lo metodológico, para analizar correctamente los datos y determinar la validez de las hipótesis de interés.