Procesamiento de imágenes satelitales a través de algoritmos de aprendizaje profundo, uso del suelo y cobertura terrestre para la estimación de la demanda de tráfico 5G

Los sistemas de comunicaciones móviles, también conocidos como Telecomunicaciones Móviles Internacionales (IMT), se han convertido en parte integrante de nuestra vida cotidiana y prestan diversos servicios de telecomunicaciones que contribuyen significativamente al bienestar social. Históricamente,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/40988
Acceso en línea:
https://doi.org/10.48713/10336_40988
https://repository.urosario.edu.co/handle/10336/40988
Palabra clave:
5G
IMT
Imagenes Satelitales
EUROSAT
Remote Sensing
Rights
License
Abierto (Texto Completo)
Description
Summary:Los sistemas de comunicaciones móviles, también conocidos como Telecomunicaciones Móviles Internacionales (IMT), se han convertido en parte integrante de nuestra vida cotidiana y prestan diversos servicios de telecomunicaciones que contribuyen significativamente al bienestar social. Históricamente, estos sistemas se han centrado en las necesidades de voz y banda ancha. Sin embargo, con la llegada de la 5G, los objetivos se han ampliado significativamente para abarcar un espectro más amplio de aplicaciones, incluidas las adaptadas a las necesidades industriales y al Internet de las Cosas (IoT). Aunque existen metodologías y recomendaciones internacionales para orientar el desarrollo de estos sistemas, a menudo se quedan cortas a la hora de identificar las necesidades únicas de la 5G. Los métodos de estimación tradicionales utilizan datos históricos sobre población y tráfico, pero pasan por alto las nuevas posibilidades que permite la 5G, como la comunicación ultra fiable y de baja latencia y el Internet de las cosas (IoT). El resultado son graves limitaciones en la estimación de la demanda potencial de tráfico para las redes 5G. Este trabajo introduce un enfoque novedoso, utilizando técnicas de teledetección y aprendizaje profundo, en concreto métodos de uso y cobertura del suelo, para comprender el contexto geográfico. Estas técnicas ofrecen una estimación detallada de las características geográficas mediante la medición remota de la radiación electromagnética reflejada y emitida. La integración del aprendizaje profundo para el procesamiento de imágenes añade aún más valor, ya que estos algoritmos han demostrado su éxito en la clasificación, segmentación, detección de objetos, restauración y mejora de imágenes. Adicionalmente, se pretende aplicar estas técnicas utilizando la base de datos de imágenes EuroSat, para mejorar el proceso de planificación de las tecnologías 5G en Colombia. El objetivo es incluir características geográficas en la planeación del despliegue, inferir casos de uso potenciales y mejorar significativamente los análisis de demanda, valoración, factibilidad y otros aspectos necesarios para el desarrollo de 5G.