Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces

On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-fre...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/44806
Acceso en línea:
https://doi.org/10.1007/s00574-024-00422-7
https://repository.urosario.edu.co/handle/10336/44806
Palabra clave:
Weierstrass surface
Elliptic surface
Fourier-Mukai transform
Stability
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id EDOCUR2_7df64aec0b4950ef32af04e65da86229
oai_identifier_str oai:repository.urosario.edu.co:10336/44806
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 145caa2c-ec77-4baf-b669-8d8c280792fe23cb6cc1-6001-4b3f-b211-d594c922f29d67aee708-2b99-43b2-8b0f-ad161093082e2025-01-26T18:29:40Z2025-01-26T18:29:40Z2024-12-012024-12-01On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a -stable object, and describe a modification upon which a-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects.application/pdfhttps://doi.org/10.1007/s00574-024-00422-7https://repository.urosario.edu.co/handle/10336/44806engBulletin of the Brazilian Mathematical SocietyBulletin of the Brazilian Mathematical SocietyAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Bulletin of the Brazilian Mathematical Societyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURWeierstrass surfaceElliptic surfaceFourier-Mukai transformStabilityFourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic SurfacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Lo, JasonLiu, WanminMartínez, CristianORIGINALFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdfapplication/pdf613509https://repository.urosario.edu.co/bitstreams/ca9e1206-b1f1-4959-9fd3-3b145546592c/download34f54ed715a04375b51321019a0e40c7MD51TEXTFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.txtFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.txtExtracted texttext/plain83032https://repository.urosario.edu.co/bitstreams/f38d6754-3328-4d8c-8b5f-89dc72af6f4d/download75328d0600f386e1def2ce9a21e30196MD52THUMBNAILFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.jpgFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.jpgGenerated Thumbnailimage/jpeg3845https://repository.urosario.edu.co/bitstreams/a054325a-d59c-46d8-8ac6-6154d5ba4485/downloadcbfdefd03a5ac5744cb86eec11d557d0MD5310336/44806oai:repository.urosario.edu.co:10336/448062025-02-28 17:26:31.931http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
title Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
spellingShingle Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
Weierstrass surface
Elliptic surface
Fourier-Mukai transform
Stability
title_short Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
title_full Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
title_fullStr Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
title_full_unstemmed Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
title_sort Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
dc.subject.spa.fl_str_mv Weierstrass surface
Elliptic surface
Fourier-Mukai transform
Stability
topic Weierstrass surface
Elliptic surface
Fourier-Mukai transform
Stability
description On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a -stable object, and describe a modification upon which a-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects.
publishDate 2024
dc.date.created.spa.fl_str_mv 2024-12-01
dc.date.issued.spa.fl_str_mv 2024-12-01
dc.date.accessioned.none.fl_str_mv 2025-01-26T18:29:40Z
dc.date.available.none.fl_str_mv 2025-01-26T18:29:40Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s00574-024-00422-7
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/44806
url https://doi.org/10.1007/s00574-024-00422-7
https://repository.urosario.edu.co/handle/10336/44806
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Bulletin of the Brazilian Mathematical Society
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bulletin of the Brazilian Mathematical Society
dc.source.spa.fl_str_mv Bulletin of the Brazilian Mathematical Society
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/ca9e1206-b1f1-4959-9fd3-3b145546592c/download
https://repository.urosario.edu.co/bitstreams/f38d6754-3328-4d8c-8b5f-89dc72af6f4d/download
https://repository.urosario.edu.co/bitstreams/a054325a-d59c-46d8-8ac6-6154d5ba4485/download
bitstream.checksum.fl_str_mv 34f54ed715a04375b51321019a0e40c7
75328d0600f386e1def2ce9a21e30196
cbfdefd03a5ac5744cb86eec11d557d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1831928210646892544