Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces
On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-fre...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/44806
- Acceso en línea:
- https://doi.org/10.1007/s00574-024-00422-7
https://repository.urosario.edu.co/handle/10336/44806
- Palabra clave:
- Weierstrass surface
Elliptic surface
Fourier-Mukai transform
Stability
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_7df64aec0b4950ef32af04e65da86229 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/44806 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
145caa2c-ec77-4baf-b669-8d8c280792fe23cb6cc1-6001-4b3f-b211-d594c922f29d67aee708-2b99-43b2-8b0f-ad161093082e2025-01-26T18:29:40Z2025-01-26T18:29:40Z2024-12-012024-12-01On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a -stable object, and describe a modification upon which a-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects.application/pdfhttps://doi.org/10.1007/s00574-024-00422-7https://repository.urosario.edu.co/handle/10336/44806engBulletin of the Brazilian Mathematical SocietyBulletin of the Brazilian Mathematical SocietyAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Bulletin of the Brazilian Mathematical Societyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURWeierstrass surfaceElliptic surfaceFourier-Mukai transformStabilityFourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic SurfacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Lo, JasonLiu, WanminMartínez, CristianORIGINALFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdfapplication/pdf613509https://repository.urosario.edu.co/bitstreams/ca9e1206-b1f1-4959-9fd3-3b145546592c/download34f54ed715a04375b51321019a0e40c7MD51TEXTFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.txtFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.txtExtracted texttext/plain83032https://repository.urosario.edu.co/bitstreams/f38d6754-3328-4d8c-8b5f-89dc72af6f4d/download75328d0600f386e1def2ce9a21e30196MD52THUMBNAILFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.jpgFourier-Mukai_Transforms_and_Stable_Sheaves_on_Weierstrass_Elliptic_Surfaces.pdf.jpgGenerated Thumbnailimage/jpeg3845https://repository.urosario.edu.co/bitstreams/a054325a-d59c-46d8-8ac6-6154d5ba4485/downloadcbfdefd03a5ac5744cb86eec11d557d0MD5310336/44806oai:repository.urosario.edu.co:10336/448062025-02-28 17:26:31.931http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
title |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
spellingShingle |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces Weierstrass surface Elliptic surface Fourier-Mukai transform Stability |
title_short |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
title_full |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
title_fullStr |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
title_full_unstemmed |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
title_sort |
Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces |
dc.subject.spa.fl_str_mv |
Weierstrass surface Elliptic surface Fourier-Mukai transform Stability |
topic |
Weierstrass surface Elliptic surface Fourier-Mukai transform Stability |
description |
On a Weierstraß elliptic surface X, we define a “limit” of Bridgeland stability conditions, denoted as-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a -stable object, and describe a modification upon which a-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects. |
publishDate |
2024 |
dc.date.created.spa.fl_str_mv |
2024-12-01 |
dc.date.issued.spa.fl_str_mv |
2024-12-01 |
dc.date.accessioned.none.fl_str_mv |
2025-01-26T18:29:40Z |
dc.date.available.none.fl_str_mv |
2025-01-26T18:29:40Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/s00574-024-00422-7 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/44806 |
url |
https://doi.org/10.1007/s00574-024-00422-7 https://repository.urosario.edu.co/handle/10336/44806 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Bulletin of the Brazilian Mathematical Society |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bulletin of the Brazilian Mathematical Society |
dc.source.spa.fl_str_mv |
Bulletin of the Brazilian Mathematical Society |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/ca9e1206-b1f1-4959-9fd3-3b145546592c/download https://repository.urosario.edu.co/bitstreams/f38d6754-3328-4d8c-8b5f-89dc72af6f4d/download https://repository.urosario.edu.co/bitstreams/a054325a-d59c-46d8-8ac6-6154d5ba4485/download |
bitstream.checksum.fl_str_mv |
34f54ed715a04375b51321019a0e40c7 75328d0600f386e1def2ce9a21e30196 cbfdefd03a5ac5744cb86eec11d557d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928210646892544 |