Lipid metabolism of leukocytes in the unstimulated and activated states
Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22222
- Acceso en línea:
- https://doi.org/10.1007/s00216-020-02460-8
https://repository.urosario.edu.co/handle/10336/22222
- Palabra clave:
- Cytology
Metabolism
Phospholipids
Polyunsaturated fatty acids
Well stimulation
Analytical technology
CD14
Comprehensive analysis
Correlation coefficient
Differential mobility spectrometries
Lipidomics
Neutrophils
Phosphatidyl choline
T-cells
CD14+
CD4+
IPA extraction
Lipidomics
Lipidyzer™
Neutrophils
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_7db068d12965d87786023f7ca0252b39 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22222 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Lipid metabolism of leukocytes in the unstimulated and activated states |
title |
Lipid metabolism of leukocytes in the unstimulated and activated states |
spellingShingle |
Lipid metabolism of leukocytes in the unstimulated and activated states Cytology Metabolism Phospholipids Polyunsaturated fatty acids Well stimulation Analytical technology CD14 Comprehensive analysis Correlation coefficient Differential mobility spectrometries Lipidomics Neutrophils Phosphatidyl choline T-cells CD14+ CD4+ IPA extraction Lipidomics Lipidyzer™ Neutrophils |
title_short |
Lipid metabolism of leukocytes in the unstimulated and activated states |
title_full |
Lipid metabolism of leukocytes in the unstimulated and activated states |
title_fullStr |
Lipid metabolism of leukocytes in the unstimulated and activated states |
title_full_unstemmed |
Lipid metabolism of leukocytes in the unstimulated and activated states |
title_sort |
Lipid metabolism of leukocytes in the unstimulated and activated states |
dc.subject.keyword.spa.fl_str_mv |
Cytology Metabolism Phospholipids Polyunsaturated fatty acids Well stimulation Analytical technology CD14 Comprehensive analysis Correlation coefficient Differential mobility spectrometries Lipidomics Neutrophils Phosphatidyl choline T-cells CD14+ CD4+ IPA extraction Lipidomics Lipidyzer™ Neutrophils |
topic |
Cytology Metabolism Phospholipids Polyunsaturated fatty acids Well stimulation Analytical technology CD14 Comprehensive analysis Correlation coefficient Differential mobility spectrometries Lipidomics Neutrophils Phosphatidyl choline T-cells CD14+ CD4+ IPA extraction Lipidomics Lipidyzer™ Neutrophils |
description |
Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™ platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV less than 15). By comparing the lipidome of neutrophils (PMNs), monocytes (CD14+), and lymphocytes (CD4+), we shed light on leukocyte-specific lipid patterns as well as lipidomic changes occurring through differential stimulation. For example, at the resting state, PMNs proved to contain higher amounts of triacylglycerides compared to CD4+ and CD14+ cells. On the other hand, CD4+ and CD14+ cells contained higher levels of phospholipids and ceramides. Upon stimulation, diacylglycerides, hexosylceramides, phosphatidylcholines, phosphoethanolamines, and lysophosphoethanolamines were upregulated in CD4+ cells and PMNs, whereas CD14+ cells did not show significant changes. By exploring the fatty acid content of the significantly upregulated lipid classes, we mainly found increased concentrations of very long and polyunsaturated fatty acids. Our results indicate the usefulness of the Lipidyzer™ platform for studying cellular lipid metabolism. Its application allowed us to explore the lipidome of leukocytes. [Figure not available: see fulltext.] © 2020, The Author(s). |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:55:48Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:55:48Z |
dc.date.created.spa.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s00216-020-02460-8 |
dc.identifier.issn.none.fl_str_mv |
16182642 16182650 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22222 |
url |
https://doi.org/10.1007/s00216-020-02460-8 https://repository.urosario.edu.co/handle/10336/22222 |
identifier_str_mv |
16182642 16182650 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
2363 |
dc.relation.citationIssue.none.fl_str_mv |
No. 10 |
dc.relation.citationStartPage.none.fl_str_mv |
2353 |
dc.relation.citationTitle.none.fl_str_mv |
Analytical and Bioanalytical Chemistry |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 412 |
dc.relation.ispartof.spa.fl_str_mv |
Analytical and Bioanalytical Chemistry, ISSN:16182642, 16182650, Vol.412, No.10 (2020); pp. 2353-2363 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079732901&doi=10.1007%2fs00216-020-02460-8&partnerID=40&md5=228cda709743ea62b3b96cf0ae36887f |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/c7bd9852-0ca6-4c40-8a04-04d867bb0003/download https://repository.urosario.edu.co/bitstreams/435708f5-9c94-4780-86cc-98326174a062/download https://repository.urosario.edu.co/bitstreams/d797bc9a-bc41-4a32-9cdc-c25794f9d77b/download |
bitstream.checksum.fl_str_mv |
c93a3ec84d59e8cf9657a02abe2bfe4c 94df434df36e55608be342a293728970 aadd62d8548acda287556d29fcc00a56 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167609698942976 |
spelling |
19d0fd03-04b9-46a3-9272-0a157abf4f02-1e70de874-d85c-458c-81a5-8407d5a9d2e5-163399d41-b011-477a-b1d6-0a60c32130af-113f9680f-8fde-4a20-83e4-b898a268468e-12211d6e9-112d-4aa0-b523-fb25f0d3ae7f-122ddb3ee-1ff3-4df2-8b06-c196fd95c209-154c85df2-9d25-4e78-8f84-620237a4c259-1798319816002020-05-25T23:55:48Z2020-05-25T23:55:48Z2020Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™ platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV less than 15). By comparing the lipidome of neutrophils (PMNs), monocytes (CD14+), and lymphocytes (CD4+), we shed light on leukocyte-specific lipid patterns as well as lipidomic changes occurring through differential stimulation. For example, at the resting state, PMNs proved to contain higher amounts of triacylglycerides compared to CD4+ and CD14+ cells. On the other hand, CD4+ and CD14+ cells contained higher levels of phospholipids and ceramides. Upon stimulation, diacylglycerides, hexosylceramides, phosphatidylcholines, phosphoethanolamines, and lysophosphoethanolamines were upregulated in CD4+ cells and PMNs, whereas CD14+ cells did not show significant changes. By exploring the fatty acid content of the significantly upregulated lipid classes, we mainly found increased concentrations of very long and polyunsaturated fatty acids. Our results indicate the usefulness of the Lipidyzer™ platform for studying cellular lipid metabolism. Its application allowed us to explore the lipidome of leukocytes. [Figure not available: see fulltext.] © 2020, The Author(s).application/pdfhttps://doi.org/10.1007/s00216-020-02460-81618264216182650https://repository.urosario.edu.co/handle/10336/22222engSpringer2363No. 102353Analytical and Bioanalytical ChemistryVol. 412Analytical and Bioanalytical Chemistry, ISSN:16182642, 16182650, Vol.412, No.10 (2020); pp. 2353-2363https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079732901&doi=10.1007%2fs00216-020-02460-8&partnerID=40&md5=228cda709743ea62b3b96cf0ae36887fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCytologyMetabolismPhospholipidsPolyunsaturated fatty acidsWell stimulationAnalytical technologyCD14Comprehensive analysisCorrelation coefficientDifferential mobility spectrometriesLipidomicsNeutrophilsPhosphatidyl cholineT-cellsCD14+CD4+IPA extractionLipidomicsLipidyzer™NeutrophilsLipid metabolism of leukocytes in the unstimulated and activated statesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Alarcon-Barrera, Juan Carlosvon Hegedus, Johannes H.Brouwers, HildeSteenvoorden, EvelyneIoan-Facsinay, AndreeaMayboroda, Oleg A.Giera, MartinOndo Méndez, Alejandro OyonoORIGINALAlarcon-Barrera2020_Article_LipidMetabolismOfLeukocytesInT.pdfapplication/pdf1509826https://repository.urosario.edu.co/bitstreams/c7bd9852-0ca6-4c40-8a04-04d867bb0003/downloadc93a3ec84d59e8cf9657a02abe2bfe4cMD51TEXTAlarcon-Barrera2020_Article_LipidMetabolismOfLeukocytesInT.pdf.txtAlarcon-Barrera2020_Article_LipidMetabolismOfLeukocytesInT.pdf.txtExtracted texttext/plain44940https://repository.urosario.edu.co/bitstreams/435708f5-9c94-4780-86cc-98326174a062/download94df434df36e55608be342a293728970MD52THUMBNAILAlarcon-Barrera2020_Article_LipidMetabolismOfLeukocytesInT.pdf.jpgAlarcon-Barrera2020_Article_LipidMetabolismOfLeukocytesInT.pdf.jpgGenerated Thumbnailimage/jpeg4469https://repository.urosario.edu.co/bitstreams/d797bc9a-bc41-4a32-9cdc-c25794f9d77b/downloadaadd62d8548acda287556d29fcc00a56MD5310336/22222oai:repository.urosario.edu.co:10336/222222022-05-02 07:37:13.970091https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |