Lipid metabolism of leukocytes in the unstimulated and activated states

Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22222
Acceso en línea:
https://doi.org/10.1007/s00216-020-02460-8
https://repository.urosario.edu.co/handle/10336/22222
Palabra clave:
Cytology
Metabolism
Phospholipids
Polyunsaturated fatty acids
Well stimulation
Analytical technology
CD14
Comprehensive analysis
Correlation coefficient
Differential mobility spectrometries
Lipidomics
Neutrophils
Phosphatidyl choline
T-cells
CD14+
CD4+
IPA extraction
Lipidomics
Lipidyzer™
Neutrophils
Rights
License
Abierto (Texto Completo)
Description
Summary:Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™ platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV less than 15). By comparing the lipidome of neutrophils (PMNs), monocytes (CD14+), and lymphocytes (CD4+), we shed light on leukocyte-specific lipid patterns as well as lipidomic changes occurring through differential stimulation. For example, at the resting state, PMNs proved to contain higher amounts of triacylglycerides compared to CD4+ and CD14+ cells. On the other hand, CD4+ and CD14+ cells contained higher levels of phospholipids and ceramides. Upon stimulation, diacylglycerides, hexosylceramides, phosphatidylcholines, phosphoethanolamines, and lysophosphoethanolamines were upregulated in CD4+ cells and PMNs, whereas CD14+ cells did not show significant changes. By exploring the fatty acid content of the significantly upregulated lipid classes, we mainly found increased concentrations of very long and polyunsaturated fatty acids. Our results indicate the usefulness of the Lipidyzer™ platform for studying cellular lipid metabolism. Its application allowed us to explore the lipidome of leukocytes. [Figure not available: see fulltext.] © 2020, The Author(s).