Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest
Cities are increasingly promoting policies that increase and conserve urban forests based largely on biophysical and land use-cover metrics. This study demonstrates how socioeconomic factors need to be considered in geospatial analyses when formulating urban greening policies. Using remote sensing,...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26970
- Acceso en línea:
- https://doi.org/10.2747/1548-1603.49.3.428
https://repository.urosario.edu.co/handle/10336/26970
- Palabra clave:
- Urban greening policies
Socioeconomic factors
Urban forest cover
Geospatial approach
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_7a4ab7cdbe7be8cd19b8d377c2b04625 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/26970 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
b8420d3d-ae5e-4153-9ef6-a87a2a6e2bc9-19ae99ce8-fc5b-408a-9ab0-eab12cb36c9e-10d28b405-48aa-49b8-96af-9e4f9a3b2be9-1f73f5103-a60c-48c1-97d3-ce4062077844-1c0a2c37a-ed2c-442b-957b-a93788108155-12020-08-19T14:40:38Z2020-08-19T14:40:38Z2012-01-01Cities are increasingly promoting policies that increase and conserve urban forests based largely on biophysical and land use-cover metrics. This study demonstrates how socioeconomic factors need to be considered in geospatial analyses when formulating urban greening policies. Using remote sensing, geographical information systems, spatial field and census data, and policy analyses, we analyzed the effectiveness of urban forest cover policies that included socioeconomic factors when quantifying urban forest cover. We found that urban forest cover was heterogeneous across the study area and non-white residents younger than 19 and greater than 45 years old living in rentals were more likely to reside in areas with less urban forest cover than any other age cohort. Our analyses also indicated that urban forest cover was temporally variable and demographic factors unique to Miami-Dade County bring to light the complexity of establishing homogenous, county-wide 'tree canopy' and urban greening policy goals. We present a localized socioeconomic and ecologically based geospatial approach for formulating urban forest cover goals.application/pdfhttps://doi.org/10.2747/1548-1603.49.3.428ISSN: 1548-1603https://repository.urosario.edu.co/handle/10336/26970engTaylor & Francis449No. 3428GIScience and Remote SensingVol. 49GIScience and Remote Sensing, ISSN:1548-1603, Vol.49, No.3 (May, 2013); pp. 428-449https://www.tandfonline.com/doi/abs/10.2747/1548-1603.49.3.428Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecGIScience and Remote Sensinginstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURUrban greening policiesSocioeconomic factorsUrban forest coverGeospatial approachSocioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban ForestFactores socioeconómicos y políticas de cobertura arbórea urbana en un bosque urbano subtropicalarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Szantoi, ZoltanEscobedo, FranciscoWagner, JohnRodriguez, Joysee M.Smith, Scot10336/26970oai:repository.urosario.edu.co:10336/269702022-05-02 07:37:21.865268https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
dc.title.TranslatedTitle.spa.fl_str_mv |
Factores socioeconómicos y políticas de cobertura arbórea urbana en un bosque urbano subtropical |
title |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
spellingShingle |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest Urban greening policies Socioeconomic factors Urban forest cover Geospatial approach |
title_short |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
title_full |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
title_fullStr |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
title_full_unstemmed |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
title_sort |
Socioeconomic Factors and Urban Tree Cover Policies in a Subtropical Urban Forest |
dc.subject.keyword.spa.fl_str_mv |
Urban greening policies Socioeconomic factors Urban forest cover Geospatial approach |
topic |
Urban greening policies Socioeconomic factors Urban forest cover Geospatial approach |
description |
Cities are increasingly promoting policies that increase and conserve urban forests based largely on biophysical and land use-cover metrics. This study demonstrates how socioeconomic factors need to be considered in geospatial analyses when formulating urban greening policies. Using remote sensing, geographical information systems, spatial field and census data, and policy analyses, we analyzed the effectiveness of urban forest cover policies that included socioeconomic factors when quantifying urban forest cover. We found that urban forest cover was heterogeneous across the study area and non-white residents younger than 19 and greater than 45 years old living in rentals were more likely to reside in areas with less urban forest cover than any other age cohort. Our analyses also indicated that urban forest cover was temporally variable and demographic factors unique to Miami-Dade County bring to light the complexity of establishing homogenous, county-wide 'tree canopy' and urban greening policy goals. We present a localized socioeconomic and ecologically based geospatial approach for formulating urban forest cover goals. |
publishDate |
2012 |
dc.date.created.spa.fl_str_mv |
2012-01-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:40:38Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:40:38Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.2747/1548-1603.49.3.428 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 1548-1603 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/26970 |
url |
https://doi.org/10.2747/1548-1603.49.3.428 https://repository.urosario.edu.co/handle/10336/26970 |
identifier_str_mv |
ISSN: 1548-1603 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
449 |
dc.relation.citationIssue.none.fl_str_mv |
No. 3 |
dc.relation.citationStartPage.none.fl_str_mv |
428 |
dc.relation.citationTitle.none.fl_str_mv |
GIScience and Remote Sensing |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 49 |
dc.relation.ispartof.spa.fl_str_mv |
GIScience and Remote Sensing, ISSN:1548-1603, Vol.49, No.3 (May, 2013); pp. 428-449 |
dc.relation.uri.spa.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.2747/1548-1603.49.3.428 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor & Francis |
dc.source.spa.fl_str_mv |
GIScience and Remote Sensing |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167700235091968 |