A distinguisher for high rate McEliece cryptosystems

The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28909
Acceso en línea:
https://doi.org/10.1109/ITW.2011.6089437
https://repository.urosario.edu.co/handle/10336/28909
Palabra clave:
Cryptography
Vectors
Equations
Decoding
Generators
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_784a20193a066637768179f74e385d51
oai_identifier_str oai:repository.urosario.edu.co:10336/28909
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling f2728995-91c8-4937-b6d2-887f83c86fff52929478600047fac0e-2019-4697-8667-c046cdc3bd08485959bc-71db-4576-870c-216c519dd4ce835dac5e-170c-437e-8a29-07fb73acafc02020-08-28T15:50:04Z2020-08-28T15:50:04Z2011-12-01The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes.application/pdfhttps://doi.org/10.1109/ITW.2011.6089437ISBN: 978-1-4577-0438-3EISBN: 978-1-4577-0437-6https://repository.urosario.edu.co/handle/10336/28909engIEEE2862822011 IEEE Information Theory WorkshopIEEE Information Theory Workshop, ISBN: 978-1-4577-0438-3;EISBN: 978-1-4577-0437-6 (2011 ); pp. 282-286https://ieeexplore.ieee.org/document/6089437Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2011 IEEE Information Theory Workshopinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCryptographyVectorsEquationsDecodingGeneratorsA distinguisher for high rate McEliece cryptosystemsUn distintivo para los criptosistemas McEliece de alta velocidadbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Faugère, Jean-CharlesGauthier-Umaña, ValérieOtmani, AyoubPerret, LudovicTillich, Jean-Pierre10336/28909oai:repository.urosario.edu.co:10336/289092021-09-01 06:48:16.3https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A distinguisher for high rate McEliece cryptosystems
dc.title.TranslatedTitle.spa.fl_str_mv Un distintivo para los criptosistemas McEliece de alta velocidad
title A distinguisher for high rate McEliece cryptosystems
spellingShingle A distinguisher for high rate McEliece cryptosystems
Cryptography
Vectors
Equations
Decoding
Generators
title_short A distinguisher for high rate McEliece cryptosystems
title_full A distinguisher for high rate McEliece cryptosystems
title_fullStr A distinguisher for high rate McEliece cryptosystems
title_full_unstemmed A distinguisher for high rate McEliece cryptosystems
title_sort A distinguisher for high rate McEliece cryptosystems
dc.subject.keyword.spa.fl_str_mv Cryptography
Vectors
Equations
Decoding
Generators
topic Cryptography
Vectors
Equations
Decoding
Generators
description The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes.
publishDate 2011
dc.date.created.spa.fl_str_mv 2011-12-01
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:50:04Z
dc.date.available.none.fl_str_mv 2020-08-28T15:50:04Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/ITW.2011.6089437
dc.identifier.issn.none.fl_str_mv ISBN: 978-1-4577-0438-3
EISBN: 978-1-4577-0437-6
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28909
url https://doi.org/10.1109/ITW.2011.6089437
https://repository.urosario.edu.co/handle/10336/28909
identifier_str_mv ISBN: 978-1-4577-0438-3
EISBN: 978-1-4577-0437-6
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 286
dc.relation.citationStartPage.none.fl_str_mv 282
dc.relation.citationTitle.none.fl_str_mv 2011 IEEE Information Theory Workshop
dc.relation.ispartof.spa.fl_str_mv IEEE Information Theory Workshop, ISBN: 978-1-4577-0438-3;EISBN: 978-1-4577-0437-6 (2011 ); pp. 282-286
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/6089437
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2011 IEEE Information Theory Workshop
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167554788163584