A distinguisher for high rate McEliece cryptosystems
The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28909
- Acceso en línea:
- https://doi.org/10.1109/ITW.2011.6089437
https://repository.urosario.edu.co/handle/10336/28909
- Palabra clave:
- Cryptography
Vectors
Equations
Decoding
Generators
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_784a20193a066637768179f74e385d51 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28909 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
f2728995-91c8-4937-b6d2-887f83c86fff52929478600047fac0e-2019-4697-8667-c046cdc3bd08485959bc-71db-4576-870c-216c519dd4ce835dac5e-170c-437e-8a29-07fb73acafc02020-08-28T15:50:04Z2020-08-28T15:50:04Z2011-12-01The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes.application/pdfhttps://doi.org/10.1109/ITW.2011.6089437ISBN: 978-1-4577-0438-3EISBN: 978-1-4577-0437-6https://repository.urosario.edu.co/handle/10336/28909engIEEE2862822011 IEEE Information Theory WorkshopIEEE Information Theory Workshop, ISBN: 978-1-4577-0438-3;EISBN: 978-1-4577-0437-6 (2011 ); pp. 282-286https://ieeexplore.ieee.org/document/6089437Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2011 IEEE Information Theory Workshopinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCryptographyVectorsEquationsDecodingGeneratorsA distinguisher for high rate McEliece cryptosystemsUn distintivo para los criptosistemas McEliece de alta velocidadbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Faugère, Jean-CharlesGauthier-Umaña, ValérieOtmani, AyoubPerret, LudovicTillich, Jean-Pierre10336/28909oai:repository.urosario.edu.co:10336/289092021-09-01 06:48:16.3https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A distinguisher for high rate McEliece cryptosystems |
dc.title.TranslatedTitle.spa.fl_str_mv |
Un distintivo para los criptosistemas McEliece de alta velocidad |
title |
A distinguisher for high rate McEliece cryptosystems |
spellingShingle |
A distinguisher for high rate McEliece cryptosystems Cryptography Vectors Equations Decoding Generators |
title_short |
A distinguisher for high rate McEliece cryptosystems |
title_full |
A distinguisher for high rate McEliece cryptosystems |
title_fullStr |
A distinguisher for high rate McEliece cryptosystems |
title_full_unstemmed |
A distinguisher for high rate McEliece cryptosystems |
title_sort |
A distinguisher for high rate McEliece cryptosystems |
dc.subject.keyword.spa.fl_str_mv |
Cryptography Vectors Equations Decoding Generators |
topic |
Cryptography Vectors Equations Decoding Generators |
description |
The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes. |
publishDate |
2011 |
dc.date.created.spa.fl_str_mv |
2011-12-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:50:04Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:50:04Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ITW.2011.6089437 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-1-4577-0438-3 EISBN: 978-1-4577-0437-6 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28909 |
url |
https://doi.org/10.1109/ITW.2011.6089437 https://repository.urosario.edu.co/handle/10336/28909 |
identifier_str_mv |
ISBN: 978-1-4577-0438-3 EISBN: 978-1-4577-0437-6 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
286 |
dc.relation.citationStartPage.none.fl_str_mv |
282 |
dc.relation.citationTitle.none.fl_str_mv |
2011 IEEE Information Theory Workshop |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Information Theory Workshop, ISBN: 978-1-4577-0438-3;EISBN: 978-1-4577-0437-6 (2011 ); pp. 282-286 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/6089437 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2011 IEEE Information Theory Workshop |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167554788163584 |