Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach
La tesis exploró la integración de la Ciencia de Datos y la Inteligencia Artificial en los equipos especiales de fútbol americano. Se utilizó el conjunto de datos NFL Big Data Bowl 2022 y la API de OpenAI Gym para crear un entorno de entrenamiento dinámico. Se entrenaron dos conjuntos de agentes que...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/40933
- Acceso en línea:
- https://doi.org/10.48713/10336_40933
https://repository.urosario.edu.co/handle/10336/40933
- Palabra clave:
- Aprendizaje reforzado
Ciencia de datos
Fútbol americano
Inteligencia Artificial
Procesos de toma de decisiones
Reinforcement learning
Data Science
American football
Artificial Intelligence
Decision-making processes
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_7499548a70f9ec0b7f4f266e20066dc5 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/40933 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
dc.title.TranslatedTitle.none.fl_str_mv |
Mejorando el rendimiento en equipos especiales dentro de la NFL mediante el aprendizaje por refuerzo: Un enfoque basado en datos |
title |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
spellingShingle |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach Aprendizaje reforzado Ciencia de datos Fútbol americano Inteligencia Artificial Procesos de toma de decisiones Reinforcement learning Data Science American football Artificial Intelligence Decision-making processes |
title_short |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
title_full |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
title_fullStr |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
title_full_unstemmed |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
title_sort |
Enhancing performance in special teams within the NFL through reinforcement learning: A data-driven approach |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Dorado, Alexander |
dc.subject.none.fl_str_mv |
Aprendizaje reforzado Ciencia de datos Fútbol americano Inteligencia Artificial Procesos de toma de decisiones |
topic |
Aprendizaje reforzado Ciencia de datos Fútbol americano Inteligencia Artificial Procesos de toma de decisiones Reinforcement learning Data Science American football Artificial Intelligence Decision-making processes |
dc.subject.keyword.none.fl_str_mv |
Reinforcement learning Data Science American football Artificial Intelligence Decision-making processes |
description |
La tesis exploró la integración de la Ciencia de Datos y la Inteligencia Artificial en los equipos especiales de fútbol americano. Se utilizó el conjunto de datos NFL Big Data Bowl 2022 y la API de OpenAI Gym para crear un entorno de entrenamiento dinámico. Se entrenaron dos conjuntos de agentes que representaban diferentes posiciones dentro de los equipos especiales con el objetivo de aprender estrategias óptimas para alcanzar sus objetivos. El propósito era proporcionar información a los entrenadores, mejorar los procesos de toma de decisiones y aumentar el rendimiento en jugadas específicas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-07T16:54:59Z |
dc.date.available.none.fl_str_mv |
2023-09-07T16:54:59Z |
dc.date.created.none.fl_str_mv |
2023-07-25 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_40933 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/40933 |
url |
https://doi.org/10.48713/10336_40933 https://repository.urosario.edu.co/handle/10336/40933 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
69 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.none.fl_str_mv |
Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
N. Chmait and H. Westerbeek, “Artificial intelligence and machine learning in sport research: An introduction for non-data scientists,” Frontiers in Sports and Active Living, p. 363, 2021. U. Brefeld, J. Davis, M. Lames, and J. J. Little, “Machine learning in sports (dagstuhl seminar 21411),” in Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, vol. 11, 2022. J. McCarthy, “What is artificial intelligence,” 2007. I. El Naqa and M. J. Murphy, What is machine learning? Springer, 2015 T. O. Ayodele, “Types of machine learning algorithms,” New advances in machine learning, vol. 3, pp. 19–48, 2010 S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learning: An overview,” in Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2, Springer, 2018, pp. 426–440. M. A. Wiering et al., “Reinforcement learning in dynamic environments using instantiated information,” in Machine Learning: Proceedings of the Eighteenth International Conference (ICML2001), 2001, pp. 585–592 X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown environment based on deep reinforcement learning,” Journal of Robotics, vol. 2018, 2018. R. Graham, H. McCabe, and S. Sheridan, “Neural networks for real-time pathfinding in computer games,” ITB J, vol. 5, no. 1, p. 21, 2004. M. Sinkar, M. Izhan, S. Nimkar, and S. Kurhade, “Multi-agent path finding using dynamic distributed deep learning model,” in 2021 International Conference on Communication information and Computing Technology (ICCICT), IEEE, 2021, pp. 1–6. S. Saeedvand, S. N. Razavi, and F. Ansaroudi, “Path-finding in multi-agent, unexplored and dynamic military environment using genetic algorithm,” Journal of World’s Electrical Engineering and Technology, vol. 2322, p. 5114, 2015. D. Jugan and D. T. Ahmed, “A decision-making and actions framework for ball carriers in american football.,” in MAICS, 2015, pp. 109–116. O. Baykal and F. N. Alpaslan, “Supervised learning in football game environments using artificial neural networks,” in 2018 3rd International Conference on Computer Science and Engineering (UBMK), IEEE, 2018, pp. 110–115. S. Omidshafiei, D. Hennes, M. Garnelo, et al., “Multiagent off-screen behavior prediction in football,” Scientific reports, vol. 12, no. 1, p. 8638, 2022. A. Krogh, “What are artificial neural networks?” Nature biotechnology, vol. 26, no. 2, pp. 195–197, 2008. B. M. Wilamowski, “Neural network architectures and learning,” in IEEE International Conference on Industrial Technology, 2003, IEEE, vol. 1, 2003, TU1– T12. A. Drewek-Ossowicka, M. Pietrołaj, and J. Rumi ´nski, “A survey of neural networks usage for intrusion detection systems,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 497–514, 2021. K. G. Kim, “Book review: Deep learning,” Healthcare informatics research, vol. 22, no. 4, pp. 351–354, 2016. M. Reza, “Galaxy morphology classification using automated machine learning,” Astronomy and Computing, vol. 37, p. 100 492, 2021. M. Z. Alom, T. M. Taha, C. Yakopcic, et al., “A state-of-the-art survey on deep learning theory and architectures,” electronics, vol. 8, no. 3, p. 292, 2019 B. Kumaraswamy, “Neural networks for data classification,” in Artificial intelligence in data mining, Elsevier, 2021, pp. 109–131. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015. Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017. P.Dell’Aversana, “Reinforcement learning in optimization problems. applications to geophysical data inversion,” AIMS Geosci, vol. 8, pp. 488–502, 2022. R. S. Sutton, A. G. Barto, et al., “Reinforcement learning,” Journal of Cognitive Neuroscience, vol. 11, no. 1, pp. 126–134, 1999. S. Porwal and D. Vora, “A comparative analysis of data cleaning approaches to dirty data,” International Journal of Computer Applications, vol. 62, no. 17, pp. 30– 34, 2013 E. Rahm, H. H. Do, et al., “Data cleaning: Problems and current approaches,” IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000. L. Sun, J. Zhai, and W. Qin, “Crowd navigation in an unknown and dynamic environment based on deep reinforcement learning,” IEEE Access, vol. 7, pp. 109 544– 109 554, 2019 M. L. Puterman, “Markov decision processes,” Handbooks in operations research and management science, vol. 2, pp. 331–434, 1990. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017. Y. Liu, D. Zhang, and H. B. Gooi, “Data-driven decision-making strategies for electricity retailers: A deep reinforcement learning approach,” CSEE Journal of Power and Energy Systems, vol. 7, no. 2, pp. 358–367, 2020 Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning for continuous control,” in International conference on machine learning, PMLR, 2016, pp. 1329–1338. L. Espeholt, H. Soyer, R. Munos, et al., “Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures,” in International conference on machine learning, PMLR, 2018, pp. 1407–1416 A. Tato and R. Nkambou, “Improving adam optimizer,” 2018. J. Schmidt-Hieber, “Nonparametric regression using deep neural networks with relu activation function,” 2020 L. Pauly, D Hogg, R Fuentes, and H Peel, “Deeper networks for pavement crack detection,” in Proceedings of the 34th ISARC, IAARC, 2017, pp. 479–485. M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale machine learning.,” in Osdi, Savannah, GA, USA, vol. 16, 2016, pp. 265–28 |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/5e326c11-4d05-4982-8ade-80f76f66a8d7/download https://repository.urosario.edu.co/bitstreams/3cf0eda4-1a3e-490b-b3f5-4bb8204a3bdf/download https://repository.urosario.edu.co/bitstreams/56e73d26-91e4-4ece-9f11-3a73f683a78e/download https://repository.urosario.edu.co/bitstreams/60eba0dc-fe63-45a0-89b5-7cbf3fd6a44c/download https://repository.urosario.edu.co/bitstreams/362d01b1-0e78-4b92-9bac-008ffa6a9fb5/download |
bitstream.checksum.fl_str_mv |
d2f737ca4b406d41b88aff33a8c4b595 b2825df9f458e9d5d96ee8b7cd74fde6 5643bfd9bcf29d560eeec56d584edaa9 08251a4b47d747501557498a0cf0723d b7ba992d6907e7d9da62a63e9ee376bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167698433638400 |
spelling |
Caicedo Dorado, Alexander654b415e-488b-4204-9e90-1846db9bc0a6-1Alvarez Barbosa, SantiagoProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónPregradoFull time3dd5264a-80e2-4004-8241-b1f634021b78-12023-09-07T16:54:59Z2023-09-07T16:54:59Z2023-07-25La tesis exploró la integración de la Ciencia de Datos y la Inteligencia Artificial en los equipos especiales de fútbol americano. Se utilizó el conjunto de datos NFL Big Data Bowl 2022 y la API de OpenAI Gym para crear un entorno de entrenamiento dinámico. Se entrenaron dos conjuntos de agentes que representaban diferentes posiciones dentro de los equipos especiales con el objetivo de aprender estrategias óptimas para alcanzar sus objetivos. El propósito era proporcionar información a los entrenadores, mejorar los procesos de toma de decisiones y aumentar el rendimiento en jugadas específicas.The thesis explored the integration of Data Science and Artificial Intelligence in American football special teams. The NFL Big Data Bowl 2022 dataset and the OpenAI Gym API were used to create a dynamic training environment. Two sets of agents representing different positions within special teams were trained with the aim of learning optimal strategies to achieve their objectives. The goal was to provide information to the coaches, enhance decision-making processes, and improve performance in specific plays.69 ppapplication/pdfhttps://doi.org/10.48713/10336_40933 https://repository.urosario.edu.co/handle/10336/40933engUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACCAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2N. Chmait and H. Westerbeek, “Artificial intelligence and machine learning in sport research: An introduction for non-data scientists,” Frontiers in Sports and Active Living, p. 363, 2021.U. Brefeld, J. Davis, M. Lames, and J. J. Little, “Machine learning in sports (dagstuhl seminar 21411),” in Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, vol. 11, 2022.J. McCarthy, “What is artificial intelligence,” 2007.I. El Naqa and M. J. Murphy, What is machine learning? Springer, 2015T. O. Ayodele, “Types of machine learning algorithms,” New advances in machine learning, vol. 3, pp. 19–48, 2010S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learning: An overview,” in Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2, Springer, 2018, pp. 426–440.M. A. Wiering et al., “Reinforcement learning in dynamic environments using instantiated information,” in Machine Learning: Proceedings of the Eighteenth International Conference (ICML2001), 2001, pp. 585–592X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown environment based on deep reinforcement learning,” Journal of Robotics, vol. 2018, 2018.R. Graham, H. McCabe, and S. Sheridan, “Neural networks for real-time pathfinding in computer games,” ITB J, vol. 5, no. 1, p. 21, 2004.M. Sinkar, M. Izhan, S. Nimkar, and S. Kurhade, “Multi-agent path finding using dynamic distributed deep learning model,” in 2021 International Conference on Communication information and Computing Technology (ICCICT), IEEE, 2021, pp. 1–6.S. Saeedvand, S. N. Razavi, and F. Ansaroudi, “Path-finding in multi-agent, unexplored and dynamic military environment using genetic algorithm,” Journal of World’s Electrical Engineering and Technology, vol. 2322, p. 5114, 2015.D. Jugan and D. T. Ahmed, “A decision-making and actions framework for ball carriers in american football.,” in MAICS, 2015, pp. 109–116.O. Baykal and F. N. Alpaslan, “Supervised learning in football game environments using artificial neural networks,” in 2018 3rd International Conference on Computer Science and Engineering (UBMK), IEEE, 2018, pp. 110–115.S. Omidshafiei, D. Hennes, M. Garnelo, et al., “Multiagent off-screen behavior prediction in football,” Scientific reports, vol. 12, no. 1, p. 8638, 2022.A. Krogh, “What are artificial neural networks?” Nature biotechnology, vol. 26, no. 2, pp. 195–197, 2008.B. M. Wilamowski, “Neural network architectures and learning,” in IEEE International Conference on Industrial Technology, 2003, IEEE, vol. 1, 2003, TU1– T12.A. Drewek-Ossowicka, M. Pietrołaj, and J. Rumi ´nski, “A survey of neural networks usage for intrusion detection systems,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 497–514, 2021.K. G. Kim, “Book review: Deep learning,” Healthcare informatics research, vol. 22, no. 4, pp. 351–354, 2016.M. Reza, “Galaxy morphology classification using automated machine learning,” Astronomy and Computing, vol. 37, p. 100 492, 2021.M. Z. Alom, T. M. Taha, C. Yakopcic, et al., “A state-of-the-art survey on deep learning theory and architectures,” electronics, vol. 8, no. 3, p. 292, 2019B. Kumaraswamy, “Neural networks for data classification,” in Artificial intelligence in data mining, Elsevier, 2021, pp. 109–131.Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.P.Dell’Aversana, “Reinforcement learning in optimization problems. applications to geophysical data inversion,” AIMS Geosci, vol. 8, pp. 488–502, 2022.R. S. Sutton, A. G. Barto, et al., “Reinforcement learning,” Journal of Cognitive Neuroscience, vol. 11, no. 1, pp. 126–134, 1999.S. Porwal and D. Vora, “A comparative analysis of data cleaning approaches to dirty data,” International Journal of Computer Applications, vol. 62, no. 17, pp. 30– 34, 2013E. Rahm, H. H. Do, et al., “Data cleaning: Problems and current approaches,” IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.L. Sun, J. Zhai, and W. Qin, “Crowd navigation in an unknown and dynamic environment based on deep reinforcement learning,” IEEE Access, vol. 7, pp. 109 544– 109 554, 2019M. L. Puterman, “Markov decision processes,” Handbooks in operations research and management science, vol. 2, pp. 331–434, 1990.J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.Y. Liu, D. Zhang, and H. B. Gooi, “Data-driven decision-making strategies for electricity retailers: A deep reinforcement learning approach,” CSEE Journal of Power and Energy Systems, vol. 7, no. 2, pp. 358–367, 2020Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning for continuous control,” in International conference on machine learning, PMLR, 2016, pp. 1329–1338.L. Espeholt, H. Soyer, R. Munos, et al., “Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures,” in International conference on machine learning, PMLR, 2018, pp. 1407–1416A. Tato and R. Nkambou, “Improving adam optimizer,” 2018.J. Schmidt-Hieber, “Nonparametric regression using deep neural networks with relu activation function,” 2020L. Pauly, D Hogg, R Fuentes, and H Peel, “Deeper networks for pavement crack detection,” in Proceedings of the 34th ISARC, IAARC, 2017, pp. 479–485.M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale machine learning.,” in Osdi, Savannah, GA, USA, vol. 16, 2016, pp. 265–28instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAprendizaje reforzadoCiencia de datosFútbol americanoInteligencia ArtificialProcesos de toma de decisionesReinforcement learningData ScienceAmerican footballArtificial IntelligenceDecision-making processesEnhancing performance in special teams within the NFL through reinforcement learning: A data-driven approachMejorando el rendimiento en equipos especiales dentro de la NFL mediante el aprendizaje por refuerzo: Un enfoque basado en datosbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Ingeniería, Ciencia y TecnologíaORIGINALEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdfEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdfapplication/pdf17241297https://repository.urosario.edu.co/bitstreams/5e326c11-4d05-4982-8ade-80f76f66a8d7/downloadd2f737ca4b406d41b88aff33a8c4b595MD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/3cf0eda4-1a3e-490b-b3f5-4bb8204a3bdf/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/56e73d26-91e4-4ece-9f11-3a73f683a78e/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdf.txtEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdf.txtExtracted texttext/plain100592https://repository.urosario.edu.co/bitstreams/60eba0dc-fe63-45a0-89b5-7cbf3fd6a44c/download08251a4b47d747501557498a0cf0723dMD54THUMBNAILEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdf.jpgEnhancing_Performance_in_Special_Teams_within_the_NFL_through_Reinforcement_Learning__A_Data_Driven_Approach.pdf.jpgGenerated Thumbnailimage/jpeg3192https://repository.urosario.edu.co/bitstreams/362d01b1-0e78-4b92-9bac-008ffa6a9fb5/downloadb7ba992d6907e7d9da62a63e9ee376bfMD5510336/40933oai:repository.urosario.edu.co:10336/409332023-09-08 03:03:19.069http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |