On the Gaussian q-distribution
We present a study of the Gaussian q-measure introduced by Díaz and Teruel from a probabilistic and from a combinatorial viewpoint. A main motivation for the introduction of the Gaussian q-measure is that its moments are exactly the q-analogues of the double factorial numbers. We show that the Gauss...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2009
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/18755
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/18755
- Palabra clave:
- Gaussian Measure
Q-Calculus
Q-Combinatorics
Cuadratura de Gauss
Integración numérica
Análisis numérico
- Rights
- License
- Abierto (Texto Completo)
Summary: | We present a study of the Gaussian q-measure introduced by Díaz and Teruel from a probabilistic and from a combinatorial viewpoint. A main motivation for the introduction of the Gaussian q-measure is that its moments are exactly the q-analogues of the double factorial numbers. We show that the Gaussian q-measure interpolates between the uniform measure on the interval [- 1, 1] and the Gaussian measure on the real line. © 2009 Elsevier Inc. All rights reserved. |
---|