Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease
Parkinson's disease (PD)is a neurological disorder affecting dopaminergic neurons in the nigrostriatal pathways of the brain. PD is a multifactorial disease and its causes should be sought in detrimental interactions between genes and environment. Since early mechanistic studies, excessive oxid...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23822
- Acceso en línea:
- https://doi.org/10.1016/j.cophys.2019.04.025
https://repository.urosario.edu.co/handle/10336/23822
- Palabra clave:
- Cysteine
Disulfide
Hydrogen peroxide
Thiol
Cell function
Dopaminergic nerve cell
Evolution
Human
Nonhuman
Oxidation
Oxidation reduction state
Parkinson disease
Review
Signal transduction
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_6cdf72fb45a192a386064d2f51dd8a0f |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23822 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
feb567b4-24f5-4f34-bcfc-f77b55a86345-1e58ff967-c5c1-4277-877b-4f7a4faa87ba-1763272336002020-05-26T00:05:45Z2020-05-26T00:05:45Z2019Parkinson's disease (PD)is a neurological disorder affecting dopaminergic neurons in the nigrostriatal pathways of the brain. PD is a multifactorial disease and its causes should be sought in detrimental interactions between genes and environment. Since early mechanistic studies, excessive oxidation – or oxidative stress – emerged as a recurring and fundamental pathogenic mechanism, and consequently received significant attention. More recent evidence obtained at single-cell resolution, however, indicates that dopaminergic neurons in the substantia nigra display increased oxidation levels also in normal, physiological conditions; differently than pathological oxidation, the importance of this phenomenon is underappreciated. The nigrostriatal dopaminergic system is involved in behavioral strategies that have been under strong evolutionary pressure. It is therefore improbable that physiological oxidation in dopamine neurons is accidental. Here, we review recent literature to argue that moderate oxidation improves redox signaling – which in dopamine neurons is intertwined with electrophysiological activity and is important to regulate dopamine release – and also has a protective role. We also reason that physiological oxidation provides an example of antagonistic pleiotropy therefore offering an advantage during reproductive stages of life while becoming detrimental during aging. Collectively, we believe that these observations provide a new perspective in the biology of dopaminergic neurons and in PD. © 2019 The Authorsapplication/pdfhttps://doi.org/10.1016/j.cophys.2019.04.025https://repository.urosario.edu.co/handle/10336/23822engElsevier Ltd7873Current Opinion in PhysiologyVol. 9Current Opinion in Physiology, Vol.9,(2019); pp. 73-78https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066310663&doi=10.1016%2fj.cophys.2019.04.025&partnerID=40&md5=b4162ac8ac60da129e9eff49d7bdbe39Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCysteineDisulfideHydrogen peroxideThiolCell functionDopaminergic nerve cellEvolutionHumanNonhumanOxidationOxidation reduction stateParkinson diseaseReviewSignal transductionCysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's diseasearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Milanese, ChiaraMastroberardino, Pier GPayan-Gomez, CesarORIGINAL1-s2-0-S2468867319300859-main.pdfapplication/pdf512207https://repository.urosario.edu.co/bitstreams/b33234e3-9463-411a-820e-8eb2cf318530/download07923ebbf7e72046511c82545d537e62MD51TEXT1-s2-0-S2468867319300859-main.pdf.txt1-s2-0-S2468867319300859-main.pdf.txtExtracted texttext/plain32798https://repository.urosario.edu.co/bitstreams/96b72455-be36-49b3-afb4-658dc93f68fc/download2b16a4396ec440992fabd154bb4f7799MD52THUMBNAIL1-s2-0-S2468867319300859-main.pdf.jpg1-s2-0-S2468867319300859-main.pdf.jpgGenerated Thumbnailimage/jpeg4946https://repository.urosario.edu.co/bitstreams/94c4f500-1712-46b2-8e9a-c00dcfddfb7b/downloadbd9cd494bf6eeacf564ba997754e305eMD5310336/23822oai:repository.urosario.edu.co:10336/238222022-05-02 07:37:21.223448https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
title |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
spellingShingle |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease Cysteine Disulfide Hydrogen peroxide Thiol Cell function Dopaminergic nerve cell Evolution Human Nonhuman Oxidation Oxidation reduction state Parkinson disease Review Signal transduction |
title_short |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
title_full |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
title_fullStr |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
title_full_unstemmed |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
title_sort |
Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease |
dc.subject.keyword.spa.fl_str_mv |
Cysteine Disulfide Hydrogen peroxide Thiol Cell function Dopaminergic nerve cell Evolution Human Nonhuman Oxidation Oxidation reduction state Parkinson disease Review Signal transduction |
topic |
Cysteine Disulfide Hydrogen peroxide Thiol Cell function Dopaminergic nerve cell Evolution Human Nonhuman Oxidation Oxidation reduction state Parkinson disease Review Signal transduction |
description |
Parkinson's disease (PD)is a neurological disorder affecting dopaminergic neurons in the nigrostriatal pathways of the brain. PD is a multifactorial disease and its causes should be sought in detrimental interactions between genes and environment. Since early mechanistic studies, excessive oxidation – or oxidative stress – emerged as a recurring and fundamental pathogenic mechanism, and consequently received significant attention. More recent evidence obtained at single-cell resolution, however, indicates that dopaminergic neurons in the substantia nigra display increased oxidation levels also in normal, physiological conditions; differently than pathological oxidation, the importance of this phenomenon is underappreciated. The nigrostriatal dopaminergic system is involved in behavioral strategies that have been under strong evolutionary pressure. It is therefore improbable that physiological oxidation in dopamine neurons is accidental. Here, we review recent literature to argue that moderate oxidation improves redox signaling – which in dopamine neurons is intertwined with electrophysiological activity and is important to regulate dopamine release – and also has a protective role. We also reason that physiological oxidation provides an example of antagonistic pleiotropy therefore offering an advantage during reproductive stages of life while becoming detrimental during aging. Collectively, we believe that these observations provide a new perspective in the biology of dopaminergic neurons and in PD. © 2019 The Authors |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:05:45Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:05:45Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.cophys.2019.04.025 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23822 |
url |
https://doi.org/10.1016/j.cophys.2019.04.025 https://repository.urosario.edu.co/handle/10336/23822 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
78 |
dc.relation.citationStartPage.none.fl_str_mv |
73 |
dc.relation.citationTitle.none.fl_str_mv |
Current Opinion in Physiology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 9 |
dc.relation.ispartof.spa.fl_str_mv |
Current Opinion in Physiology, Vol.9,(2019); pp. 73-78 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066310663&doi=10.1016%2fj.cophys.2019.04.025&partnerID=40&md5=b4162ac8ac60da129e9eff49d7bdbe39 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/b33234e3-9463-411a-820e-8eb2cf318530/download https://repository.urosario.edu.co/bitstreams/96b72455-be36-49b3-afb4-658dc93f68fc/download https://repository.urosario.edu.co/bitstreams/94c4f500-1712-46b2-8e9a-c00dcfddfb7b/download |
bitstream.checksum.fl_str_mv |
07923ebbf7e72046511c82545d537e62 2b16a4396ec440992fabd154bb4f7799 bd9cd494bf6eeacf564ba997754e305e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167431451508736 |