Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23121
- Acceso en línea:
- https://doi.org/10.1145/3009968
https://repository.urosario.edu.co/handle/10336/23121
- Palabra clave:
- Chains
Queueing theory
Stochastic models
Stochastic systems
Exponential distributions
Infinite state space
Integrated frameworks
Markov Decision Processes
Optimal decision-rule
Phase type distributions
Quasi-birth and death process
Steady state and transients
Markov processes
Markov chains
Markov decision processes
Phase-type distributions
Quasi-birth-and-death processes
Stochastic modeling
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_64dc8c71b236d879713d5635a17a9091 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23121 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
80035202600273eb489-32eb-4447-b7a8-1119e00788b460c130d0-58fc-47a3-8444-700a89ae0505e7556a82-943e-4727-a2fc-85c8636fd54e091ab8a3-ee78-4923-aa12-df94df2e3d55aacd88ee-f149-4ca0-9397-7fa8fb52276c7a7b29fa-fb19-4f27-9b90-be52d40083992020-05-25T23:59:51Z2020-05-25T23:59:51Z2017Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems. In this article, we introduce jMarkov, a framework for MC modeling that provides the user with the ability to define MC models from the basic rules underlying the system dynamics. From these rules, jMarkov automatically obtains the MC parameters and solves the model to determine steady-state and transient performance measures. The jMarkov framework is composed of four modules: (i) the main module supports MC models with a finite state space; (ii) the jQBD module enables the modeling of Quasi-Birth-and-Death processes, a class of MCs with infinite state space; (iii) the jMDP module offers the capabilities to determine optimal decision rules based on Markov Decision Processes; and (iv) the jPhase module supports the manipulation and inclusion of phase-type variables to representmore general behaviors than that of the standard exponential distribution. In addition, jMarkov is highly extensible, allowing the users to introduce new modeling abstractions and solvers. © 2017 ACM.application/pdfhttps://doi.org/10.1145/3009968983500https://repository.urosario.edu.co/handle/10336/23121engAssociation for Computing MachineryNo. 3ACM Transactions on Mathematical SoftwareVol. 43ACM Transactions on Mathematical Software, ISSN:983500, Vol.43, No.3 (2017)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011339690&doi=10.1145%2f3009968&partnerID=40&md5=64fd83b593cb72483141e59f1e1ba7dcAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURChainsQueueing theoryStochastic modelsStochastic systemsExponential distributionsInfinite state spaceIntegrated frameworksMarkov Decision ProcessesOptimal decision-rulePhase type distributionsQuasi-birth and death processSteady state and transientsMarkov processesMarkov chainsMarkov decision processesPhase-type distributionsQuasi-birth-and-death processesStochastic modelingAlgorithm 972: JMarkov: An integrated framework for Markov chain modelingarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pérez, Juan F.Silva D.F.Góez J.C.Riaño G.Sarmiento A.Sarmiento-Romero A.Akhavan-Tabatabaei R.10336/23121oai:repository.urosario.edu.co:10336/231212022-05-02 07:37:17.047363https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
title |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
spellingShingle |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling Chains Queueing theory Stochastic models Stochastic systems Exponential distributions Infinite state space Integrated frameworks Markov Decision Processes Optimal decision-rule Phase type distributions Quasi-birth and death process Steady state and transients Markov processes Markov chains Markov decision processes Phase-type distributions Quasi-birth-and-death processes Stochastic modeling |
title_short |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
title_full |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
title_fullStr |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
title_full_unstemmed |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
title_sort |
Algorithm 972: JMarkov: An integrated framework for Markov chain modeling |
dc.subject.keyword.spa.fl_str_mv |
Chains Queueing theory Stochastic models Stochastic systems Exponential distributions Infinite state space Integrated frameworks Markov Decision Processes Optimal decision-rule Phase type distributions Quasi-birth and death process Steady state and transients Markov processes Markov chains Markov decision processes Phase-type distributions Quasi-birth-and-death processes Stochastic modeling |
topic |
Chains Queueing theory Stochastic models Stochastic systems Exponential distributions Infinite state space Integrated frameworks Markov Decision Processes Optimal decision-rule Phase type distributions Quasi-birth and death process Steady state and transients Markov processes Markov chains Markov decision processes Phase-type distributions Quasi-birth-and-death processes Stochastic modeling |
description |
Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems. In this article, we introduce jMarkov, a framework for MC modeling that provides the user with the ability to define MC models from the basic rules underlying the system dynamics. From these rules, jMarkov automatically obtains the MC parameters and solves the model to determine steady-state and transient performance measures. The jMarkov framework is composed of four modules: (i) the main module supports MC models with a finite state space; (ii) the jQBD module enables the modeling of Quasi-Birth-and-Death processes, a class of MCs with infinite state space; (iii) the jMDP module offers the capabilities to determine optimal decision rules based on Markov Decision Processes; and (iv) the jPhase module supports the manipulation and inclusion of phase-type variables to representmore general behaviors than that of the standard exponential distribution. In addition, jMarkov is highly extensible, allowing the users to introduce new modeling abstractions and solvers. © 2017 ACM. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:59:51Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:59:51Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1145/3009968 |
dc.identifier.issn.none.fl_str_mv |
983500 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23121 |
url |
https://doi.org/10.1145/3009968 https://repository.urosario.edu.co/handle/10336/23121 |
identifier_str_mv |
983500 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationIssue.none.fl_str_mv |
No. 3 |
dc.relation.citationTitle.none.fl_str_mv |
ACM Transactions on Mathematical Software |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 43 |
dc.relation.ispartof.spa.fl_str_mv |
ACM Transactions on Mathematical Software, ISSN:983500, Vol.43, No.3 (2017) |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011339690&doi=10.1145%2f3009968&partnerID=40&md5=64fd83b593cb72483141e59f1e1ba7dc |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Association for Computing Machinery |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167529841491968 |