Algorithm 972: JMarkov: An integrated framework for Markov chain modeling

Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23121
Acceso en línea:
https://doi.org/10.1145/3009968
https://repository.urosario.edu.co/handle/10336/23121
Palabra clave:
Chains
Queueing theory
Stochastic models
Stochastic systems
Exponential distributions
Infinite state space
Integrated frameworks
Markov Decision Processes
Optimal decision-rule
Phase type distributions
Quasi-birth and death process
Steady state and transients
Markov processes
Markov chains
Markov decision processes
Phase-type distributions
Quasi-birth-and-death processes
Stochastic modeling
Rights
License
Abierto (Texto Completo)
id EDOCUR2_64dc8c71b236d879713d5635a17a9091
oai_identifier_str oai:repository.urosario.edu.co:10336/23121
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 80035202600273eb489-32eb-4447-b7a8-1119e00788b460c130d0-58fc-47a3-8444-700a89ae0505e7556a82-943e-4727-a2fc-85c8636fd54e091ab8a3-ee78-4923-aa12-df94df2e3d55aacd88ee-f149-4ca0-9397-7fa8fb52276c7a7b29fa-fb19-4f27-9b90-be52d40083992020-05-25T23:59:51Z2020-05-25T23:59:51Z2017Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems. In this article, we introduce jMarkov, a framework for MC modeling that provides the user with the ability to define MC models from the basic rules underlying the system dynamics. From these rules, jMarkov automatically obtains the MC parameters and solves the model to determine steady-state and transient performance measures. The jMarkov framework is composed of four modules: (i) the main module supports MC models with a finite state space; (ii) the jQBD module enables the modeling of Quasi-Birth-and-Death processes, a class of MCs with infinite state space; (iii) the jMDP module offers the capabilities to determine optimal decision rules based on Markov Decision Processes; and (iv) the jPhase module supports the manipulation and inclusion of phase-type variables to representmore general behaviors than that of the standard exponential distribution. In addition, jMarkov is highly extensible, allowing the users to introduce new modeling abstractions and solvers. © 2017 ACM.application/pdfhttps://doi.org/10.1145/3009968983500https://repository.urosario.edu.co/handle/10336/23121engAssociation for Computing MachineryNo. 3ACM Transactions on Mathematical SoftwareVol. 43ACM Transactions on Mathematical Software, ISSN:983500, Vol.43, No.3 (2017)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011339690&doi=10.1145%2f3009968&partnerID=40&md5=64fd83b593cb72483141e59f1e1ba7dcAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURChainsQueueing theoryStochastic modelsStochastic systemsExponential distributionsInfinite state spaceIntegrated frameworksMarkov Decision ProcessesOptimal decision-rulePhase type distributionsQuasi-birth and death processSteady state and transientsMarkov processesMarkov chainsMarkov decision processesPhase-type distributionsQuasi-birth-and-death processesStochastic modelingAlgorithm 972: JMarkov: An integrated framework for Markov chain modelingarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pérez, Juan F.Silva D.F.Góez J.C.Riaño G.Sarmiento A.Sarmiento-Romero A.Akhavan-Tabatabaei R.10336/23121oai:repository.urosario.edu.co:10336/231212022-05-02 07:37:17.047363https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
title Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
spellingShingle Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
Chains
Queueing theory
Stochastic models
Stochastic systems
Exponential distributions
Infinite state space
Integrated frameworks
Markov Decision Processes
Optimal decision-rule
Phase type distributions
Quasi-birth and death process
Steady state and transients
Markov processes
Markov chains
Markov decision processes
Phase-type distributions
Quasi-birth-and-death processes
Stochastic modeling
title_short Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
title_full Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
title_fullStr Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
title_full_unstemmed Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
title_sort Algorithm 972: JMarkov: An integrated framework for Markov chain modeling
dc.subject.keyword.spa.fl_str_mv Chains
Queueing theory
Stochastic models
Stochastic systems
Exponential distributions
Infinite state space
Integrated frameworks
Markov Decision Processes
Optimal decision-rule
Phase type distributions
Quasi-birth and death process
Steady state and transients
Markov processes
Markov chains
Markov decision processes
Phase-type distributions
Quasi-birth-and-death processes
Stochastic modeling
topic Chains
Queueing theory
Stochastic models
Stochastic systems
Exponential distributions
Infinite state space
Integrated frameworks
Markov Decision Processes
Optimal decision-rule
Phase type distributions
Quasi-birth and death process
Steady state and transients
Markov processes
Markov chains
Markov decision processes
Phase-type distributions
Quasi-birth-and-death processes
Stochastic modeling
description Markov chains (MC) are a powerful tool for modeling complex stochastic systems. Whereas a number of tools exist for solving different types ofMCmodels, the first step inMCmodeling is to define themodel parameters. This step is, however, error prone and far from trivial when modeling complex systems. In this article, we introduce jMarkov, a framework for MC modeling that provides the user with the ability to define MC models from the basic rules underlying the system dynamics. From these rules, jMarkov automatically obtains the MC parameters and solves the model to determine steady-state and transient performance measures. The jMarkov framework is composed of four modules: (i) the main module supports MC models with a finite state space; (ii) the jQBD module enables the modeling of Quasi-Birth-and-Death processes, a class of MCs with infinite state space; (iii) the jMDP module offers the capabilities to determine optimal decision rules based on Markov Decision Processes; and (iv) the jPhase module supports the manipulation and inclusion of phase-type variables to representmore general behaviors than that of the standard exponential distribution. In addition, jMarkov is highly extensible, allowing the users to introduce new modeling abstractions and solvers. © 2017 ACM.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:59:51Z
dc.date.available.none.fl_str_mv 2020-05-25T23:59:51Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1145/3009968
dc.identifier.issn.none.fl_str_mv 983500
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23121
url https://doi.org/10.1145/3009968
https://repository.urosario.edu.co/handle/10336/23121
identifier_str_mv 983500
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 3
dc.relation.citationTitle.none.fl_str_mv ACM Transactions on Mathematical Software
dc.relation.citationVolume.none.fl_str_mv Vol. 43
dc.relation.ispartof.spa.fl_str_mv ACM Transactions on Mathematical Software, ISSN:983500, Vol.43, No.3 (2017)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011339690&doi=10.1145%2f3009968&partnerID=40&md5=64fd83b593cb72483141e59f1e1ba7dc
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Association for Computing Machinery
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167529841491968