Generalización de notación asintótica vía filtros
En este documento, proporcionamos una generalización de la notación asintótica mediante la estructura topológica conocida como filtro. Presentamos algunas propiedades relevantes, como reflexividad, simetría y transitividad, junto con ejemplos adecuados para exhibir el amplio alcance de esta nueva no...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/38187
- Acceso en línea:
- https://doi.org/10.48713/10336_38187
https://repository.urosario.edu.co/handle/10336/38187
- Palabra clave:
- Notación asintótica
Espacio topológico
Filtros
Sucesión convergente
Sucesión acotada
Asymptotic notation
Topological space
Filters
Convergent sequence
Bounded sequence
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_644023268a292a22f36bb2f8be71b137 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/38187 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Generalización de notación asintótica vía filtros |
dc.title.TranslatedTitle.none.fl_str_mv |
Generalization of asymptotic notation via filters |
title |
Generalización de notación asintótica vía filtros |
spellingShingle |
Generalización de notación asintótica vía filtros Notación asintótica Espacio topológico Filtros Sucesión convergente Sucesión acotada Asymptotic notation Topological space Filters Convergent sequence Bounded sequence |
title_short |
Generalización de notación asintótica vía filtros |
title_full |
Generalización de notación asintótica vía filtros |
title_fullStr |
Generalización de notación asintótica vía filtros |
title_full_unstemmed |
Generalización de notación asintótica vía filtros |
title_sort |
Generalización de notación asintótica vía filtros |
dc.contributor.advisor.none.fl_str_mv |
Salas Brown, Margot del Valle |
dc.subject.none.fl_str_mv |
Notación asintótica Espacio topológico Filtros Sucesión convergente Sucesión acotada |
topic |
Notación asintótica Espacio topológico Filtros Sucesión convergente Sucesión acotada Asymptotic notation Topological space Filters Convergent sequence Bounded sequence |
dc.subject.keyword.none.fl_str_mv |
Asymptotic notation Topological space Filters Convergent sequence Bounded sequence |
description |
En este documento, proporcionamos una generalización de la notación asintótica mediante la estructura topológica conocida como filtro. Presentamos algunas propiedades relevantes, como reflexividad, simetría y transitividad, junto con ejemplos adecuados para exhibir el amplio alcance de esta nueva noción. Además, se demuestra que la definición habitual de notaciones asintóticas implica la generalizada por filtros, y presentamos diferentes ejemplos para asegurar que la afirmación recíproca no es válida. Además, proponemos una caracterización de las notaciones asintóticas usuales en términos de filtros. Finalmente, establecemos una relación entre sucesiones acotadas o convergentes a cero y notaciones asintóticas en filtros, que nos permiten determinar algunas propiedades de los temas tratados en este estudio |
publishDate |
2022 |
dc.date.created.none.fl_str_mv |
2022-11-23 |
dc.date.accessioned.none.fl_str_mv |
2023-03-06T17:32:13Z |
dc.date.available.none.fl_str_mv |
2023-03-06T17:32:13Z |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_38187 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/38187 |
url |
https://doi.org/10.48713/10336_38187 https://repository.urosario.edu.co/handle/10336/38187 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
64 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.none.fl_str_mv |
Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Akin, E. (1997). Recurrence in topological dynamics. Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997. Akomolafe, D. T. Nwanz, N. M. (2021). Deployment of an efficient algorithm for searching motor vehicle database, Asian Journal of Advances in Research, 18-26. Benzmüller, C. Fuenmayor, D. (2019). Computer-supported Analysis of Positiive Properties, Ultrafilters and Modal Collapse in Variants of Gödel’s Ontological Argument. Bulletin of the Section of Logic, 49(2), 127-148. Bernstein, A. R. (1970). A new kind of compactness for topological spaces, Fund. Math. 66, 185-193. Bourbaki, N. (1966). Elements of Mathematics, General Topology, Part I, AddisonWesley Pub. Co. Brassard, G. (1985). Crusade for a better notation, ACM SIGACT News, vol. 17, no. 1, pp. 60–64. Cartan, H. (1937). Théorie des filtres. Rend, 205, 595-598. Cartan, H. (1937). Filters et ultrafilters, Compt. Rend, 205, 777-779. Connor, J. Kline, J. (1996). On statistical limit points and the consistency of statistical convergence. Journal of mathematical analysis and applications, 197(2), 392-399. Cormen, T. H. Leiserson, C. E. Rivest, R. L. Stein, C. (2009). Introduction to algorithms. MIT press. Ehrig, H. Herrlich, H. Kreowski, H. J. Preuß, G. (Eds.). (1989). Categorical methods in computer science: with aspects from topology (Vol. 393). Springer Science Business Media. Folea, R. Slusanschi, E. I. (2021). A new metric for evaluating the performance and complexity of computer programs: A new approach to the traditional ways of measuring the complexity of algorithms and estimating running times. In 2021 23rd International Conference on Control Systems and Computer Science (CSCS) (pp. 157-164). IEEE. Frolík, Z. (1967). Sums of ultrafilters, Bull. Amer. Math. Soc. 73 , 87-91. Furstenberg, H. (1981). Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press. Goldreich, O. (2008). Computational complexity: a conceptual perspective. ACM Sigact News, 39(3), 35-39. Guevara, A. Sanabria, J. Rosas, E. (2020). SI-convergence of sequences. Trans. A. Razmadze Math. Inst, 174(1), 75-81. Kostyrko, P. Šalát, T. Wilczyński, W. (2000). I-convergence∗. Real analysis exchange, 669-685. Kuratowski, K. (1933). Topologies I. Warszawa Mogos, A. H. Florea, A. M. (2010). A method to compare two complexity functions using complexity classes. University"Politehnica.of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 72(2), 69-84. Mogoş, A. H. Mogoş, B. Florea, A. M. (2015). A new asymptotic notation: Weak Theta. Mathematical Problems in Engineering. Lim, T. S. Loh, W. Y. Shih, Y. S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine learning, 40(3), 203-228. Ramesh, V. P. Gowtham, R. (2017). Asymptotic notations and its applications, Ramanujan Math. Soc., Math. News, 28 (4) , 10–16. Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc. Thomas, C. Leiserson, C. E. Stein, C. (2009). Introduction to Algorithms, 3rd. Van Leeuwen, J. (1991). Handbook of theoretical computer science (vol. A) algorithms and complexity. Mit Press. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/e46f9fb6-f781-452e-b48c-a4f059f9bfec/download https://repository.urosario.edu.co/bitstreams/4224d673-b5f9-4c80-8e06-9cc1196124f2/download https://repository.urosario.edu.co/bitstreams/77d501a3-d56c-420c-8d09-16559942ac41/download https://repository.urosario.edu.co/bitstreams/2bfe9ec5-e921-4dc1-9b47-f3c4ea18ec26/download https://repository.urosario.edu.co/bitstreams/3874356b-2dfb-416d-89a5-49479363dadf/download |
bitstream.checksum.fl_str_mv |
f6dc94942bd55bd9b5cb945cc46dc0a5 b2825df9f458e9d5d96ee8b7cd74fde6 5643bfd9bcf29d560eeec56d584edaa9 ce28a6afc28084db9b56828c90109472 3dd9ecf8bb670d07e4a6f38deba3c7bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167549345005568 |
spelling |
Salas Brown, Margot del Valle9fe7600b-7941-4a59-9187-86f99234f064-1López Chacón, Ana ValentinaProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónPregradoFull time65efed66-6d3a-4c91-afd4-7e498df65a62-12023-03-06T17:32:13Z2023-03-06T17:32:13Z2022-11-23En este documento, proporcionamos una generalización de la notación asintótica mediante la estructura topológica conocida como filtro. Presentamos algunas propiedades relevantes, como reflexividad, simetría y transitividad, junto con ejemplos adecuados para exhibir el amplio alcance de esta nueva noción. Además, se demuestra que la definición habitual de notaciones asintóticas implica la generalizada por filtros, y presentamos diferentes ejemplos para asegurar que la afirmación recíproca no es válida. Además, proponemos una caracterización de las notaciones asintóticas usuales en términos de filtros. Finalmente, establecemos una relación entre sucesiones acotadas o convergentes a cero y notaciones asintóticas en filtros, que nos permiten determinar algunas propiedades de los temas tratados en este estudioWithin this document, we provide a generalization of asymptotic notation by the topological structure known as a filter. We present a few relevant properties, such as reflexivity, symmetry, and transitivity, along with suitable examples to exhibit the wide reach of this new notion. Additionally, it is shown that the usual definition of asymptotic notations implies the one generalized by filters, and we present different examples in order to ensure that the reciprocal statement is not valid. Furthermore, we propose a characterization of the usual asymptotic notations in terms of filters. Finally, we established a relationship between bounded or vanishing sequences and asymptotic notations in filters, which allowed us to determine some properties of the subjects discussed in this study64 ppapplication/pdfhttps://doi.org/10.48713/10336_38187 https://repository.urosario.edu.co/handle/10336/38187spaUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACCAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Akin, E. (1997). Recurrence in topological dynamics. Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997.Akomolafe, D. T. Nwanz, N. M. (2021). Deployment of an efficient algorithm for searching motor vehicle database, Asian Journal of Advances in Research, 18-26.Benzmüller, C. Fuenmayor, D. (2019). Computer-supported Analysis of Positiive Properties, Ultrafilters and Modal Collapse in Variants of Gödel’s Ontological Argument. Bulletin of the Section of Logic, 49(2), 127-148.Bernstein, A. R. (1970). A new kind of compactness for topological spaces, Fund. Math. 66, 185-193.Bourbaki, N. (1966). Elements of Mathematics, General Topology, Part I, AddisonWesley Pub. Co.Brassard, G. (1985). Crusade for a better notation, ACM SIGACT News, vol. 17, no. 1, pp. 60–64.Cartan, H. (1937). Théorie des filtres. Rend, 205, 595-598.Cartan, H. (1937). Filters et ultrafilters, Compt. Rend, 205, 777-779.Connor, J. Kline, J. (1996). On statistical limit points and the consistency of statistical convergence. Journal of mathematical analysis and applications, 197(2), 392-399.Cormen, T. H. Leiserson, C. E. Rivest, R. L. Stein, C. (2009). Introduction to algorithms. MIT press.Ehrig, H. Herrlich, H. Kreowski, H. J. Preuß, G. (Eds.). (1989). Categorical methods in computer science: with aspects from topology (Vol. 393). Springer Science Business Media.Folea, R. Slusanschi, E. I. (2021). A new metric for evaluating the performance and complexity of computer programs: A new approach to the traditional ways of measuring the complexity of algorithms and estimating running times. In 2021 23rd International Conference on Control Systems and Computer Science (CSCS) (pp. 157-164). IEEE.Frolík, Z. (1967). Sums of ultrafilters, Bull. Amer. Math. Soc. 73 , 87-91.Furstenberg, H. (1981). Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press.Goldreich, O. (2008). Computational complexity: a conceptual perspective. ACM Sigact News, 39(3), 35-39.Guevara, A. Sanabria, J. Rosas, E. (2020). SI-convergence of sequences. Trans. A. Razmadze Math. Inst, 174(1), 75-81.Kostyrko, P. Šalát, T. Wilczyński, W. (2000). I-convergence∗. Real analysis exchange, 669-685.Kuratowski, K. (1933). Topologies I. WarszawaMogos, A. H. Florea, A. M. (2010). A method to compare two complexity functions using complexity classes. University"Politehnica.of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 72(2), 69-84.Mogoş, A. H. Mogoş, B. Florea, A. M. (2015). A new asymptotic notation: Weak Theta. Mathematical Problems in Engineering.Lim, T. S. Loh, W. Y. Shih, Y. S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine learning, 40(3), 203-228.Ramesh, V. P. Gowtham, R. (2017). Asymptotic notations and its applications, Ramanujan Math. Soc., Math. News, 28 (4) , 10–16.Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc.Thomas, C. Leiserson, C. E. Stein, C. (2009). Introduction to Algorithms, 3rd.Van Leeuwen, J. (1991). Handbook of theoretical computer science (vol. A) algorithms and complexity. Mit Press.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURNotación asintóticaEspacio topológicoFiltrosSucesión convergenteSucesión acotadaAsymptotic notationTopological spaceFiltersConvergent sequenceBounded sequenceGeneralización de notación asintótica vía filtrosGeneralization of asymptotic notation via filtersbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Ingeniería, Ciencia y TecnologíaORIGINALGeneralizacion-de-notacion-asintotica-via-filtros.pdfGeneralizacion-de-notacion-asintotica-via-filtros.pdfapplication/pdf1406583https://repository.urosario.edu.co/bitstreams/e46f9fb6-f781-452e-b48c-a4f059f9bfec/downloadf6dc94942bd55bd9b5cb945cc46dc0a5MD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/4224d673-b5f9-4c80-8e06-9cc1196124f2/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/77d501a3-d56c-420c-8d09-16559942ac41/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTGeneralizacion-de-notacion-asintotica-via-filtros.pdf.txtGeneralizacion-de-notacion-asintotica-via-filtros.pdf.txtExtracted texttext/plain88672https://repository.urosario.edu.co/bitstreams/2bfe9ec5-e921-4dc1-9b47-f3c4ea18ec26/downloadce28a6afc28084db9b56828c90109472MD54THUMBNAILGeneralizacion-de-notacion-asintotica-via-filtros.pdf.jpgGeneralizacion-de-notacion-asintotica-via-filtros.pdf.jpgGenerated Thumbnailimage/jpeg2796https://repository.urosario.edu.co/bitstreams/3874356b-2dfb-416d-89a5-49479363dadf/download3dd9ecf8bb670d07e4a6f38deba3c7bbMD5510336/38187oai:repository.urosario.edu.co:10336/381872023-03-07 03:01:21.168http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |